• Title/Summary/Keyword: optical resolution

Search Result 1,459, Processing Time 0.026 seconds

Diffraction Efficiency Analysis of Silver Halide Film for Color Holography Recording

  • Park, Sung Chul;Kim, Sang Il;Son, Kwang Chul;Kwon, Soon Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.16-27
    • /
    • 2015
  • Holography technology which was developed by Dennis Gabor (1900~1979) in 1948 is a technology to record wave planes of actual 3D objects. It is known as the only technology which can express 3D information most perfectly close to human-friendly. Holography technology is widely used in advertisement, architecture and arts as well as science technology areas. Especially, digital holographic print which is an applied area is greatly used in military map, architecture map and cultural asset restoration by printing and reproducing 3D information. Holography is realized by recording and reproducing the amplitude and phase information on high resolution film using coherent light like laser. Recording materials for digital holographic printer are silver halide, photoresist and photopolymer. Because the materials have different diffraction efficiency according to film characteristics of each manufacturer, appropriate guide lines should be suggested through efficiency analysis of each film. This paper suggests appropriate guide lines through the diffraction efficiency measurement of silver halide which is a holographic printer recording medium. And the objective of this study is to suggest appropriate guide lines through diffraction efficiency analysis of Ultimate 08-C and PFG-03C which are commercially used. The experiment was prepared by self-diffraction efficiency system which measures the strength with the defector by penetrating RGB recording medium and concentrating diffracted beams through collimating lens. The experiment showed Geola's PFG-03C which is a silver halide for full color has price/performance advantage in optical hologram recording, but recording angles and reproduction angles are irregular for digital holographic printer recording. Ultimate's Ultimate08-C for full color shows its diffraction efficiency is relatively stable and high according to recording angles and laser wavelength.

High-quality ZnO nanowire arrays directly synthesized from Zn vapor deposition without catalyst

  • Khai, Tran Van;Prachuporn, Maneeratanasarn;Choi, Bong-Geun;Kim, Hyoun-Woo;So, Dae-Sup;Lee, Joon-Woo;Park, No-Hyung;Huh, Hoon;Tung, Ngo Trinh;Ham, Heon;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.137-146
    • /
    • 2011
  • Vertically well-aligned ZnO nanowire (NW) arrays were synthesized directly on GaN/sapphire and Si substrate from Zn vapor deposition without catalysts. Experimental results showed that the number density, diameter, crystallinity and degree of the alignment of ZnO NWs depended strongly on both the substrate position and kind of the substrates used for the growth. The photoluminescence (PL) characteristics of the grown ZnO NW arrays exhibit a strong and sharp ultraviolet (UV) emission at 379 nm and a broad weak emission in the visible range, indicating that the obtained ZnO NWs have a high crystal quality with excellent optical properties. The as-grown ZnO NWs were characterized by using scanning electron microscopy (SEM), high resolution transmission electronic microscopy (HR-TEM), and X-ray diffraction (XRD).

LC Orientation Characteristics of NLC on Polyimide Surface According to Ion-beam Irradiation Angles (이온빔 조사각도에 따른 네마틱 액정의 액정 배향 특성)

  • Lee, Kang-Min;Oh, Byeong-Yun;Park, Hong-Gyu;Lim, Ji-Hun;Lee, Won-Kyu;Na, Hyun-Jae;Kim, Byoung-Yong;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.329-329
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, noncontact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the poly imide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure poly imide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}4 for all of irradiation angles. In addition, it can be achieved the good ED properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

대전광역시 도시화 패턴 분석을 위한 원격탐사 자료 처리 및 다중시기 토지이용 현황도 제작

  • Kim, Youn-Soo;Lee, Kwang-Jae;Jeon, Gap-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • The importance of satellite data for numerous applications is stressed by the fact that many countries have given the development of space technologies very high priority. Among these, Korea has established a medium-term space development strategy to promote space development both on a scientific as well as commercial level. As part of this strategy, the first operational earth-observation, multi-purpose satellite(KOMPSAT-1) was launched successfully in December, 1999. The Electro-Optical Camera (EOC) on board of KOMPSAT-1 supplies panchromatic images with a spatial resolution of 6.6m Until April, 2004, it collected over 150.000 images of the Korean Peninsula and the rest of the world. This paper examines the use of remote sensing data to analyze urban growth in the city of Daejeon from 1960 to 2003. By using visual interpretation, land use maps are created.

  • PDF

[ Hα ] SPECTRAL PROPERTIES OF VELOCITY THREADS CONSTITUTING A QUIESCENT SOLAR FILAMENT

  • Chae, Jong-Chul;Park, Hyung-Min;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.67-82
    • /
    • 2007
  • The basic building block of solar filaments/prominences is thin threads of cool plasma. We have studied the spectral properties of velocity threads, clusters of thinner density threads moving together, by analyzing a sequence of $H{\alpha}$ images of a quiescent filament. The images were taken at Big Bear Solar Observatory with the Lyot filter being successively tuned to wavelengths of -0.6, -0.3, 0.0, +0.3, and +0.6 ${\AA}$ from the centerline. The spectra of contrast constructed from the image data at each spatial point were analyzed using cloud models with a single velocity component, or three velocity components. As a result, we have identified a couple of velocity threads that are characterized by a narrow Doppler width($\Delta\lambda_D=0.27{\AA}$), a moderate value of optical thickness at the $H{\alpha}$ absorption peak($\tau_0=0.3$), and a spatial width(FWHM) of about 1". It has also been inferred that there exist 4-6 velocity threads along the line of sight at each spatial resolution element inside the filament. In about half of the threads, matter moves fast with a line-of-sight speed of $15{\pm}3km\;s^{-1}$, but in the other half it is either at rest or slowly moving with a line-of-sight velocity of $0{\pm}3km\;s^{-1}$. It is found that a statistical balance approximately holds between the numbers of blue-shifted threads and red-shifted threads, and any imbalance between the two numbers is responsible for the non-zero line-of-sight velocity determined using a single-component model fit. Our results support the existence not only of high speed counter-streaming flows, but also of a significant amount of cool matter either being at rest or moving slowly inside the filament.

An Optical Surfacing Technique of the Best-fitted Spherical Surface of the Large Optics Mirror with Ultra Precision Polishing Machine (대형 광학계 연마 장비에 의한 대구경 반사경의 최적 근사 구면 제조 방법에 관한 연구)

  • Song, Chang Kyu;Khim, Gyungho;Hwang, Jooho;Kim, Byung Sub;Park, Chun Hong;Lee, Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper describes a novel method to surface large optics mirror with an extremely high hardness, which could replace the high cost of the repetitive off-line measurement steps and the large ultra-precision grinding machine with ultra-positioning control of 10 nm resolution. A lot of diamond pellet to be attached on the convex aluminum base consists of a grinding tool for the concave large mirror, and the tool was pressured down on the large mirror blank. The tool motion at an interval on the spiral path was controlled with each feed rate as the dwell time in the conventional computer-controlled polishing. The shape to be surfaced was measured directly by a touch probe on the machine without any separation of the mirror blank. Total 40 iterative steps of the surfacing and measurement could demonstrate the form error of RMS $7.8{\mu}m$, surface roughness of Ra $0.2{\mu}m$ for the mirror blank with diameter of 1 m and spherical radius of curvature of 5400 mm.

Application of Hyperspectral Imaging System to Analyze Vascular Alteration for Preclinical Models (전임상 혈관분석을 위한 초분광 이미징 시스템의 활용)

  • Choe, Se-Woon;Woo, Young Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • We present microscopy based hyperspectral imaging system that successively shows high spatial (micrometer) and temporal resolutions (milisecond), and acquired pseudocolor hemoglobin saturation map a result of various image processing techniques can provide additional information such as oxygen transport, abnormal vascularity and therapeutic effects besides structural and physiological measurements in various diseases. To increase understanding of vascular defects several optical methods of imaging for preclinical/clinical assessment have been developed so far. However, they have some limitations for outcoming resolution and user satisfaction level compared to its cost. A hyperspectral imaging system has shown a wide range of vascular characteristics associated with hypervascularity, aberrant angiogenesis or abnormal vascular remodeling in many diseases. This vascular characteristic is considered as a key component to diagnose and detect a type of disease as evidenced by them.

Measurement of Micro-displacement of an Object by Laser Speckle using Linear Array CCD Detection System (레이저 스펙클과 1차원 CCD소자를 이용한 물체의 미소변위측정에 관한 연구)

  • 우창헌;민동현;김수용
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.138-143
    • /
    • 1994
  • A speckle correlation method was applied to measure the in-plane translation of a diffuse object which has rough surface using a linear CCD sensor and personal computer. Displacement of a speckle pattern produced from the object illuminated by a laser beam was measured by the cross-correlation functions between the I-D speckle profiles before and after the object translation, which were measured by linear CCD array sensor to be sent to IBM 386 personal computer. The sensitivity of the measurement was dependent on the radius of the wavefront curvature of incident beam as well as the spatial resolution of linear CCD array. A linear CCD array had 15 Jlffi pitch and 1728 pixels. The ratio of the speckle displacement and object translation varied from 1.03 to 5.20. The object translation of $3\mu\textrm{m}$ can be measured br the linear CCD sensor of which pitch was $15\mu\textrm{m}$, when the ratio of the speckle displacement and object translation was 5.20.s 5.20.

  • PDF

Precise Adsorption Measurement Technique by a Phase Modulated Ellipsometry (편광변조 타원해석법에 의한 정밀 흡착측정기술)

  • Choi, B.I.;Nham, H.S.;Park, N.S.;Youn, H.S.;Lim, Tong-Kun
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.531-538
    • /
    • 2004
  • Studies of adsorption isotherms with sharp step-wise layer condensation help us to better understanding of two dimensional layers. For this, an adsorption isotherm apparatus, using a phase modulated ellipsometric technique, has been constructed and an adsorption experiment has been performed. With subatomic scale resolution(∼0.3 $\AA$), the adsorption processes could be observed by ellipsometric signals. On measurement of multilayer adsorption of argon on highly oriented pyrolytic graphite(HOPG), thousands of adsorbed layers were observed at 34.04 K, which suggests that the adsorption is completely wet. On the contrary nine sharp layers of steps for adsorptions and desorptions were observed at 67.05 K. These isotherms obtained can provide a lot of information about thermodynamic states, bonding energies between adsobate and substrate, and structure transitions in the adsorbed film.

Development of diameter 450 mm Cassegrain tlne collimator (직경 450 mm Cassegrain 형태 시준장치의 제작)

  • 양호순;이재협;이윤우;이인원;김종운;김도형
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.241-247
    • /
    • 2004
  • The collimator is necessary for the assembly and evaluation of high resolution satellite telescope. Traditionally, the off-axis paraboloid has been used as a collimator. However, it has some disadvantages in that it can suffer from air turbulence when the focal length of a collimator is long, which may result in some error in the measurement. In contrast, since the Cassegrain type collimator folds the beam, it occupies smaller space compared to the off-axis paraboloid for the same focal length. This can reduce the air turbulence, which can improve the measurement accuracy. In this paper, we explain the process of design and manufacturing of a diameter 450 mm Cassegrain type collimator, to evaluate the diameter 300 mm satellite telescope. After assembly of primary and secondary mirrors, the final wavefront error of the collimator was 0.07λ(λ=633 nm), which is the diffraction limit.