• Title/Summary/Keyword: optical metrology

Search Result 172, Processing Time 0.033 seconds

Applications of Digital Holography in Biomedical Microscopy

  • Kim, Myung-K.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.77-89
    • /
    • 2010
  • Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.

Development of a Measurement System for Curved Ship Hull Plates with Multi-Slit Structured Light (다중 슬릿 구조화 광원을 이용한 곡판 측정장치 개발)

  • Lee, Hyunho;Lee, Don Jin;Huh, Man Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.292-299
    • /
    • 2013
  • The measurement in the manufacturing process of curved ship hull plates still depends on wooden templates as a standard instrument. The metrology-enabled automation in the shipbuilding process has been challenged instead of line measurement with wooden templates. The developed measurement system consists of a CCD camera, multiple structured laser sources and 3-DOF motion device. The system carries out measurement of curved profiles for large scale plates by an optical triangulation method. The results of experiment conducted in a manufacturing shop demonstrate the accurate and robust performance.

Frequency Stabilization of Femtosecond Lasers for Dimensional Metrology (거리 및 형상 측정을 위한 펨토초 레이저의 주파수 안정화)

  • Kim Young-Jin;Jin Jong-Han;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.188-191
    • /
    • 2005
  • A common feature in various methods of optical interferometry for absolute distance measurements is the use of multiple monochromatic light components either in sequence or in parallel at the same time. Two or multiple wavelength synthesis has been studied though its performance is vulnerable to the frequency instability of the light source. Recently continuous frequency modulation is considered a promising method with availability of wide band tunable diode lasers, which also have frequency instability errors. We can lock frequencies of these third-party light sources to the modes of the femtosecond laser which is stabilized to the precision of the standard radio frequency. To this end, we have stabilized all the modes of the femtosecond laser to the atomic frequency standard by using powerful tools of frequency-domain laser stabilization.

  • PDF

Rough surface characterization using off-axis digital holographic microscopy compensated with self-hologram rotation

  • Ibrahim, Dahi Ghareab Abdelsalam
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1261-1267
    • /
    • 2018
  • In this paper, an off-axis digital holographic microscopy compensated with self-hologram rotation is presented. The process is implemented via subtracting the unwrapped phase maps of the off-axis parabolic hologram and its rotation $180^{\circ}$ to eliminate the tilt induced by the angle between the spherical object wave O and the plane reference wave R. Merit of the proposed method is that it can be done without prior knowledge of physical parameters and hence can reconstruct a parabolic hologram of $1024{\times}768$ pixels within tens of milliseconds since it doesn't require a digital reference wave. The method is applied to characterize rough gold bumps and the obtained results were compared with those extracted from the conventional reconstruction method. The comparison showed that the proposed method can characterize rough surfaces with excellent contrast and in realtime. Merit of the proposed method is that it can be used for monitoring smaller biological cells and micro-fluidic devices.

Size-of-source Effect and Self-radiation Effect of an Infrared Radiation Thermometer (적외선 복사온도계의 복사원 크기효과 및 자기복사효과)

  • Yoo, Yong-Shim;Kim, Bong-Hwak;Park, Chul-Woung;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.133-138
    • /
    • 2010
  • All radiation thermometers have a size-of-source effect (SSE) and a self-radiation effect (SRE). The SSE,defined as dependence of the detector signal of a radiation thermometer on the diameter of a source, is critically dependent on the wavelength since diffraction is the main cause. In this paper, we have measured the SSE and the SRE of TRT2 (Transfer Radiation Thermometer 2, HEITRONICS) widely used as a transfer standard in low and middle temperature range. At $300^{\circ}C$, The radiation temperature difference between the 60 mm diameter blackbody and 10 mm diameter blackbody due to the SSE was estimated to be $3.5^{\circ}C$ in low temperature mode ($8-14\;{\mu}m$) and $0.5^{\circ}C$ in middle temperature mode ($3.9\;{\mu}m$). In addition, the measured radiation temperature difference of the blackbody due to the SRE was found to be 110 mK when the body temperature change of TRT2 was set at $2.6^{\circ}C$.

Uncertainty Evaluation of Color Measurement on Light Sources and Display Devices (광원 및 디스플레이 기기의 색특성 측정의 불확도 평가)

  • Park, Seong-Chong;Lee, Dong-Hoon;Kim, Yong-Wan;Park, Seung-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.2
    • /
    • pp.110-117
    • /
    • 2009
  • This work introduces the uncertainty evaluation formulation on color measurement of light sources and display devices, such as CIE 1931 (x, y) chromaticity, CIE 1960 (u, v) chromaticity, correlated color temperature, and distribution temperature. All the mentioned quantities are reduced from spectral data in the visible range, for which uncertainties are strongly correlated between different wavelengths. Using matrix algebra we have formulated the uncertainty propagation from the SI- traceable spectral irradiance standard to the individual color related measurement quantities taking the correlation between wavelengths into account. As a result, we have demonstrated uncertainty evaluation examples of 3 types of light sources: CIE illuminant A, LED white light, and LCD white light. This method can be applied to any other quantities based on spectral measurement such as solar irradiance, material color measurement, etc.

Large Aspheric Optics and Its Applications (대구경 비구면 광학기술과 응용)

  • Lee, Yun-Woo;Moon, Il Kweon;Kihm, Hagyong;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2013
  • A large aspheric mirror is a key component for large astronomical telescopes and high resolution satellite cameras. Since it is large and has an aspheric form, it is much more difficult to fabricate it compared to the similar size of spherical mirror. Especially, the opto-mechanical design and analysis is critical to reduce the deformation of mirror surface due to the external forces such as gravity or temperature change, as the mirror size is larger and lightweighting ratio is increased. The design requirements for the mirror are different depending on the particular ground and space applications because the environmental conditions are changed. In this paper, we explain the opto-mechanical design and analysis for ground and space applications that are among the most difficult to achieve among several technologies related to development of the large aspheric mirror.

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

SI-traceable Calibration of a Transmissometer for Meteorological Optical Range (MOR) Observation (기상관측용 투과형 시정계의 국제단위계에 소급하는 교정)

  • Park, Seongchong;Lee, Dong-Hoon;Kim, Yong-Gyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • This work demonstrates the indoor SI-traceable calibration of a transmissometer with a 75-m baseline for the measurement of visibility in MOR (Meteorological Optical Range). The calibration is performed using a set of neutral density (ND) filters (OD 0.1-2.5) and a set of high-transmission quartz glass plates (a bare quartz glass plate and antireflective-coated quartz glass plates), the collection consisting of 20 artifacts in total. The luminous transmittance values of the reference artifacts had been calibrated traceable to the KRISS spectral transmittance scale, which ranges from 0.2 % to 99.5 %. The transmissometer to be calibrated typically consists of a loosely collimated light source based on a white LED (CCT ~5000 K) and a luminous intensity detector with a CIE 1924 V(${\lambda}$) spectral response. As a result of calibration, we obtained the MOR error and its uncertainty for the transmissometer in 20 m - 40 km of MOR. Based on the results, we investigated the applicability of the calibration method and the conformity of the transmissometer to the ICAO's (International Civil Aviation Organization) accuracy requirement for meteorological visibility measurement. We expect that this work will establish the standard procedure for the SI-traceable calibration of a transmissometer.