Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.2.077

Applications of Digital Holography in Biomedical Microscopy  

Kim, Myung-K. (Department of Physics, University of South Florida)
Publication Information
Journal of the Optical Society of Korea / v.14, no.2, 2010 , pp. 77-89 More about this Journal
Abstract
Digital holography (DH) is a potentially disruptive new technology for many areas of imaging science, especially in microscopy and metrology. DH offers a number of significant advantages such as the ability to acquire holograms rapidly, availability of complete amplitude and phase information of the optical field, and versatility of the interferometric and image processing techniques. This article provides a review of the digital holography, with an emphasis on its applications in biomedical microscopy. The quantitative phase microscopy by DH is described including some of the special techniques such as optical phase unwrapping and holography of total internal reflection. Tomographic imaging by digital interference holography (DIH) and related methods is described, as well as its applications in ophthalmic imaging and in biometry. Holographic manipulation and monitoring of cells and cellular components is another exciting new area of research. We discuss some of the current issues, trends, and potentials.
Keywords
Digital holography; Holographic microscopy; Biomedical imaging; Phase contrast microscopy; Optical tomography;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070-4075 (2000).   DOI
2 L. F. Yu and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Opt. Exp. 13, 5621-5627 (2005).   DOI
3 L. F. Yu and M. K. Kim, “Variable tomographic scanning with wavelength scanning digital interference holography,” Opt. Comm. 260, 462-468 (2006).   DOI   ScienceOn
4 Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817-824 (2008).   DOI
5 L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Opt. Exp. 13, 2444-2452 (2005).   DOI
6 B. M. Hennelly and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” J. Opt. Soc. Am. A 22, 917-927 (2005).   DOI   ScienceOn
7 T. M. Kreis, “Frequency analysis of digital holography,” Opt. Eng. 41, 771-778 (2002).   DOI   ScienceOn
8 L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929-5935 (2000).   DOI
9 C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Appl. Opt. 38, 4812-4820 (1999).   DOI
10 J. W. Goodman, Introduction to Fourier Optics, 2nd ed.(McGraw Hill, Boston, USA, 1996).
11 J. C. Li, P. Tankam, Z. J. Peng, and P. Picart, “Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification,” Opt. Lett. 34, 572-574 (2009).   DOI   ScienceOn
12 D. Y. Wang, J. Zhao, F. Zhang, G. Pedrini, and W. Osten, “High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms,” Appl. Opt. 47, D12-D20 (2008).   DOI
13 L. F. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).   DOI   ScienceOn
14 S. J. Jeong and C. K. Hong, “Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method,” Appl. Opt. 47, 3064-3071 (2008).   DOI
15 E. Wolf, “Determination of amplitude and phase of scattered fields by holography,” J. Opt. Soc. Am. 60, 18-20(1970).   DOI
16 R. B. Owen and A. A. Zozulya, “In-line digital holographic sensor for monitoring and characterizing marine particulates,” Opt. Eng. 39, 2187-2197 (2000).   DOI   ScienceOn
17 J. Garcia-Sucerquia, W. B. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006).   DOI
18 E. Malkiel, I. Sheng, J. Katz, and J. R. Strickler, “The three-dimensional flow field generated by a feeding calanoid copepod measured using digital holography,” J. Exp. Biol. 206, 3657-3666 (2003).   DOI   ScienceOn
19 S. Schedin, G. Pedrini, and H. J. Tizian, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39, 2853-2857 (2000).   DOI
20 B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42, 228-232(2009).   DOI   ScienceOn
21 B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt. 11, 034005 (2006).   DOI   ScienceOn
22 A. Ligresti, L. De Petrocellis, D. H. P. de la Ossa, R. Aberturas, L. Cristino, A. S. Moriello, A. Finizio, M. E. Gil, A. I. Torres, J. Molpeceres, and V. Di Marzo, “Exploiting nanotechnologies and TRPV1 channels to investigate theputative anandamide membrane transporter,” PLoS One 5, e10239 (2010).   DOI   ScienceOn
23 K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motilitycontrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Opt. Exp. 15, 14057-14064 (2007).   DOI
24 L. F. Yu, S. Mohanty, J. Zhang, S. Genc, M. K. Kim, M. W. Berns, and Z. P. Chen, “Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery,” Opt. Exp. 17, 12031-12038 (2009).   DOI
25 C. Minetti, N. Callens, G. Coupier, T. Podgorski, and F. Dubois, “Fast measurements of concentration profiles inside deformable objects in microflows with reduced spatial coherence digital holography,” Appl. Opt. 47, 5305-5314 (2008).   DOI
26 J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19, 074007 (2008).   DOI   ScienceOn
27 P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938-1946 (2003).   DOI
28 D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849-858 (1966).   DOI
29 W. Jueptner and U. Schnars, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer-Verlag, Berlin Heidelberg, Germany, 2005).
30 I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27, 1782-1790 (2008).   DOI   ScienceOn
31 I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177-6186 (2001).   DOI
32 A. Stern and B. Javidi, “Space-bandwith conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A 25, 736-741 (2008).   DOI   ScienceOn
33 W. B. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98, 11301-11305 (2001).   DOI   ScienceOn
34 J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).   DOI
35 C. J. Mann, L. F. Yu, C. M. Lo, and M. K. Kim, “Highresolution quantitative phase-contrast microscopy by digital holography,” Opt. Exp. 13, 8693-8698 (2005).   DOI
36 T. Colomb, J. Kuhn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Exp. 14, 4300-4306 (2006).   DOI
37 M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).   DOI   ScienceOn
38 F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Appl. Opt. 43, 1131-1139 (2004).   DOI
39 J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2 pi ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141-1143 (2003).   DOI   ScienceOn
40 I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).   DOI
41 F. Dubois, L. Joannes, and J. C. Legros, “Improved threedimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085-7094 (1999).   DOI
42 T. C. Poon, “Scanning holography and two-dimensional image-processing by acoustooptic 2-pupil synthesis,” J. Opt. Soc. Am. A 2, 521-527 (1985).   DOI
43 T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt. 48, H153-H159 (2009).   DOI
44 T. Kim and T. C. Poon, “Experiments of depth detection and image recovery of a remote target using a complex hologram,” Opt. Eng. 43, 1851-1855 (2004).   DOI   ScienceOn
45 T. C. Poon, “Optical scanning holography - a review of recent progress,” J. Opt. Soc. Korea 13, 406-415 (2009).   DOI   ScienceOn
46 M. K. Kim, L. F. Yu, and C. J. Mann, “Digital holography and multi-wavelength interference techniques,” in Digital Holography and Three Dimensional Display: Principles and Applications, T. C. Poon, ed. (Springer, USA, 2006), pp. 51-72.
47 D. Gabor, “A new microscope principle,” Nature 161, 777-778 (1948).   DOI
48 D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. Roy. Soc. A197, 454-487 (1949).
49 C. Knox, “Holographic microscopy as a technique for recording dynamic microscopic subjects,” Science 153, 989-990 (1966).   DOI   ScienceOn
50 E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963).   DOI
51 S. M. Khanna and J. Tonndorf, “Tympanic membrane vibrations in cats studied by time-averaged holography,” Journal of the Acoustical Society of America 51, 1904-1920 (1972).   DOI
52 J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77-79 (1967).   DOI
53 U. Schnars and W. Juptner, “Direct recording of holograms by a Ccd target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).   DOI
54 S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Exp. 9, 294-302 (2001).   DOI
55 C. J. Mann, L. F. Yu, and M. K. Kim, “Movies of cellular and sub-cellular motion by digital holographic microscopy,” Biomed. Eng. Online 5, 10 (2006).   DOI   ScienceOn
56 E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).   DOI
57 M. W. Berns, “Laser scissors and tweezers,” Scientific American 278, 62-67 (1998).
58 A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517-1520 (1987).   DOI
59 A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).   DOI
60 S. C. Kuo, “Using optics to measure biological forces and mechanics,” Traffic 2, 757-763 (2001).   DOI   ScienceOn
61 E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optics,” Review of Scientific Instruments 69, 1974-1977 (1998).   DOI   ScienceOn
62 D. J. Carnegie, D. J. Stevenson, M. Mazilu, F. Gunn-Moore, and K. Dholakia, “Guided neuronal growth using optical line traps,” Opt. Exp. 16, 10507-10517 (2008).   DOI
63 D. C. Clark, L. Krzewina, and M. K. Kim, “Quantitative analysis by digital holography of the effect of optical pressure on a biological cell,” in Proc. OSA DH Topical Meeting (Miami, FL, USA, 2010), paper JMA23.
64 M. C. Potcoava, L. Krzewina, and M. K. Kim, “Threedimensional tracking of optically trapped particles by digital Gabor holography,” in Proc. OSA DH (Miami, FL, USA, 2010), paper JMA35.
65 W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Opt. Lett. 33, 171-173 (2008).   DOI   ScienceOn
66 J. Kuhn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Opt. Lett. 34, 653-655(2009).   DOI   ScienceOn
67 Y. Jeon and C. K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Opt. Eng. 48, 105801 (2009).   DOI   ScienceOn
68 S. J. Jeong and C. K. Hong, “Illumination-angle-scanning digital interference holography for optical section imaging,” Opt. Lett. 33, 2392-2394 (2008).   DOI   ScienceOn
69 T. Kim, “Optical sectioning by optical scanning holography and a Wiener filter,” Appl. Opt. 45, 872-879 (2006).   DOI
70 G. Indebetouw and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Opt. Lett. 25, 212-214 (2000).   DOI
71 M. C. Potcoava and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Meas. Sci. Technol. 19, 074010 (2008).   DOI   ScienceOn
72 M. K. Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Opt. Exp. 7, 305-310 (2000).   DOI
73 L. F. Yu and M. K. Kim, “Pixel resolution control in numerical reconstruction of digital holography,” Opt. Lett. 31, 897-899 (2006).   DOI   ScienceOn
74 J. W. You, S. Kim, and D. Kim, “High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer,” Opt. Exp. 16, 21022-21031 (2008).   DOI
75 M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9-H15 (2009).   DOI
76 F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Exp. 14, 5895-5908 (2006).   DOI
77 L. Miccio, D. Alfieri, S. Grilli, P. Ferraro, A. Finizio, L. De Petrocellis, and S. D. Nicola, “Direct full compensation of the aberrations in quantitative phase microscopy of thin objects by a single digital hologram,” Appl. Phys. Lett. 90,041104 (2007).   DOI   ScienceOn
78 S. Shin and Y. Yu, “Three-dimensional information and refractive index measurement using a dual-wavelength digital holographic microscope,” J. Opt. Soc. Korea 13, 173-177 (2009).   DOI   ScienceOn
79 N. Warnasooriya and M. Kim, “Quantitative phase imaging using three-wavelength optical phase unwrapping,” J. Mod. Opt. 56, 67-74 (2009).   DOI   ScienceOn
80 N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Exp. 15, 9239-9247 (2007).   DOI
81 C. Liu, Y. S. Bae, W. Z. Yang, and D. Y. Kim, “All-inone multifunctional optical microscope with a single holographic measurement,” Opt. Eng. 47, 087001 (2008).   DOI   ScienceOn
82 L. Onural, “Diffraction from a wavelet point-of-view,” Opt. Lett. 18, 846-848 (1993).   DOI
83 A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203-3210 (2008).   DOI
84 W. M. Ash, L. G. Krzewina, and M. K. Kim, “Quantitative imaging of cellular adhesion by total internal reflection holographic microscopy,” Appl. Opt. 48, H144-H152 (2009).   DOI
85 D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).   DOI
86 M. Brunel, S. Coetmellec, D. Lebrun, and K. A. Ameur, “Digital phase contrast with the fractional Fourier transform,” Appl. Opt. 48, 579-583 (2009).   DOI
87 Y. Fu, G. Pedrini, B. M. Hennelly, R. M. Groves, and W. Osten, “Dual-wavelength image-plane digital holography for dynamic measurement,” Opt. Lasers Eng. 47, 552-557 (2009).   DOI   ScienceOn
88 S. S. Kou and C. J. R. Sheppard, “Imaging in digital holographic microscopy,” Opt. Exp. 15, 13640-13648 (2007).   DOI
89 N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in offaxis digital holography through nonlinear filtering,” Appl. Opt. 48, H186-H195 (2009).   DOI
90 H. Cho, J. K. Woo, D. Kim, S. Shin, and Y. Yu, “DC suppression in in-line digital holographic microscopes on the basis of an intensity-averaging method using variable pixel numbers,” Optics and Laser Technology 41, 741-745 (2009).   DOI   ScienceOn