• 제목/요약/키워드: optical lithography simulation

검색결과 26건 처리시간 0.027초

Attenuated Phase Shift Mask에 광 근접 효과 보정을 적용한 고립 패턴의 해상 한계 분석 (Resolution Limit Analysis of Isolated Patterns Using Optical Proximity Correction Method with Attenuated Phase Shift Mask)

  • 김종선;오용호;임성우;고춘수;이재철
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.901-907
    • /
    • 2000
  • As the minimum feature size for making ULSI approaches the wavelength of light source in optical lithography, the aerial image is so hardly distorted because of the optical proximity effect that the accurate mask image reconstruction on wafer surface is almost impossible. We applied the Optical Proximity Correction(OPC) on isolated patterns assuming Attenuated Phase Shift Mask(APSM) as well as binary mask, to correct the widening of isolated patterns. In this study, we found that applying OPC to APSM shows much better improvement not only in enhancing the resolution and fidelity of t도 images but also in enhancing the process margin than applying OPC to the binary mask. Also, we propose the OPC method of APSM for isolated patterns, the size of which is less than the wavelength of the ArF excimer laser. Finally, we predicted the resolution limit of optical lithography through the aerial image simulation.

  • PDF

Optical Proximity Corrections for Digital Micromirror Device-based Maskless Lithography

  • Hur, Jungyu;Seo, Manseung
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.221-227
    • /
    • 2012
  • We propose optical proximity corrections (OPCs) for digital micromirror device (DMD)-based maskless lithography. A pattern writing scheme is analyzed and a theoretical model for obtaining the dose distribution profile and resulting structure is derived. By using simulation based on this model we were able to reduce the edge placement error (EPE) between the design width and the critical dimension (CD) of a fabricated photoresist, which enables improvement of the CD. Moreover, by experiments carried out with the parameter derived from the writing scheme, we minimized the corner-rounding effect by controlling light transmission to the corners of a feature by modulating a DMD.

Simulation Research on the Thermal Effects in Dipolar Illuminated Lithography

  • Yao, Changcheng;Gong, Yan
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.251-256
    • /
    • 2016
  • The prediction of thermal effects in lithography projection objective plays a significant role in the real-time dynamic compensation of thermal aberrations. For the illuminated lithography projection objective, this paper applies finite element analysis to get the temperature distribution, surface deformation and stress data. To improve the efficiency, a temperature distribution function model is proposed to use for the simulation of thermal aberrations with the help of optical analysis software CODE V. SigFit is approved integrated optomechanical analysis software with the feature of calculating OPD effects due to temperature change, and it is utilized to prove the validation of the temperature distribution function. Results show that the impact of surface deformation and stress is negligible compared with the refractive index change; astigmatisms and 4-foil aberrations dominate in the thermal aberration, about 1.7 λ and 0.45 λ. The system takes about one hour to reach thermal equilibrium and the contrast of the imaging of dense lines get worse as time goes on.

극자외선 리소그라피에서의 Sub-resolution assist feature를 이용한 근접효과보정 (Optical Proximity Correction using Sub-resolution Assist Feature in Extreme Ultraviolet Lithography)

  • 김정식;홍성철;장용주;안진호
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.1-5
    • /
    • 2016
  • In order to apply sub-resolution assist feature (SRAF) in extreme ultraviolet lithography, the maximum non-printing SRAF width and lithography process margin needs to be improved. Through simulation, we confirmed that the maximum SRAF width of 6% attenuated phase shift mask (PSM) is large compared to conventional binary intensity mask. The increase in SRAF width is due to dark region's reflectivity of PSM which consequently improves the process window. Furthermore, the critical dimension error caused by variation of SRAF width and center position is reduced by lower change in diffraction amplitude. Therefore, we speculate that the margin of SRAF application will be improved by using PSM.

집속이온빔 리소그라피 (Focused Ion Beam Lithography)외 노출 및 현상에 대한 몬데칼로 전산 모사 (Monte-Carlo Simulation for Exposure and Development of Focused Ion Beam Lithography)

  • 이현용;김민수;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1246-1249
    • /
    • 1994
  • Thin amorphous film of $a-Se_{75}Ge_{25}$ acts as a positive resist in ion beam lithography. Previously, we reported the optical characteristics of amorphous $Se_{75}Ge_{25}$ thin film by the low-energy ion beam exposure and presented analytically calculated values such as ion range, ion concentration and ion transmission coefficient, etc. As the calculated results of analytical calculation, the energy loss per unit distance by $Ga^+$ ion is about $10^3[keV/{\mu}m]$ and nearly constant for all energy range. Especially, the projected range and struggling for 80 [KeV] $Ga^+$ ion energy are 0.0425[${\mu}m$] and 0.020[${\mu}m$], respectively. Hear, we present the results of Monte-Carlo computer simulation of Ga ion scattering, exposure and development in $a-Se_{75}Ge_{25}$ resist film for focused ion beam(FIB) lithography. Monte-Carlo method is based on the simulation of individual particles through their successive collisions with resist atoms. By the summation of the scattering events occurring in a large number N(N>10000) of simulated trajectories within the resist, the distribution for the range parameters is obtained. Also, the deposited energy density and the development pattern by a Gaussian or a rectangular ion beam exposure can be obtained.

  • PDF

Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구 (Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process)

  • 성민호;차지민;문성철;유시홍;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.306-313
    • /
    • 2015
  • In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.

CNN Based Lithography Hotspot Detection

  • Shin, Moojoon;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.208-215
    • /
    • 2016
  • The lithography hotspot detection process is crucial for semiconductor design development process. But, the lithography hotspot detection using optical simulation method takes much time and it slowdown the layout design development cycle. Though the geometry based approach is introduced as an alternative, it still revealed low detection performance and sophisticated framework. To solve this problem, we introduce a deep convolutional neural network based hotspot detection method. Our method made better results in ICCCAD 2012 dataset. To reach this score, we used lots of technical effort to improve the result in addition to just utilizing the nature of convolutional neural network. Inspection region reduction, data augmentation, DBSCAN clustering helped our work more stable and faster.

Maskless 노광공정을 위한 LDI(Laser Direct Imaging) 시스템 개발 및 단일 레이저 빔 에너지 분포 분석 (Development of a LDI System for the Maskless Exposure Process and Energy Intensity Analysis of Single Laser Beam)

  • 이수진;김종수;신봉철;김동우;조명우
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.834-840
    • /
    • 2010
  • Photo lithography process is very important technology to fabricate highly integrated micro patterns with high precision for semiconductor and display industries. Up to now, mask type lithography process has been generally used for this purpose; however, it is not efficient for small quantity and/or frequently changing products. Therefore, in order to obtain higher productivity and lower manufacturing cost, the mask type lithography process should be replaced. In this study, a maskless lithography system using the DMD(Digital Micromirror Device) is developed, and the exposure condition and optical properties are analyzed and simulated for a single beam case. From the proposed experimental conditions, required exposure experiments were preformed, and the results were investigated. As a results, 10${\mu}m$ spots can be generated at optimal focal length.

Simulation and Fabrication of the Cone Sheet for LCD Backlight Application

  • Baik, Sang-Hoon;Hwang, Sung-Ki;Kim, Young-Gyu;Park, Gyeung-Ju;Kwon, Jin-Hyuk;Moon, Won-Taek;Kim, Sung-Hoon;Kim, Byoung-Ku;Kang, Sin-Ho
    • Journal of the Optical Society of Korea
    • /
    • 제13권4호
    • /
    • pp.478-483
    • /
    • 2009
  • An optical sheet with a cone array is designed, simulated, and fabricated in order to substitute the dual crossed prism sheets in the edge-type LCD backlight. The optimum structure of cone textures that is compatible with the dual crossed prism sheets was obtained by simulating the backlight installed with the cone array optical sheet. A SU-8 photoresist films of thickness $30{\sim}50{\mu}m$ were spin-coated on a polyethylene terephtalate film (PET), and the cone texture array was formed by using the diffuse lithography that employed a photomask with circular patterns and an optical diffuser.