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Abstract

The lithography hotspot detection process is crucial for semiconductor design development
process. But, the lithography hotspot detection using optical simulation method takes much
time and it slowdown the layout design development cycle. Though the geometry based
approach is introduced as an alternative, it still revealed low detection performance and
sophisticated framework. To solve this problem, we introduce a deep convolutional neural
network based hotspot detection method. Our method made better results in ICCCAD 2012
dataset. To reach this score, we used lots of technical effort to improve the result in addition to
just utilizing the nature of convolutional neural network. Inspection region reduction, data
augmentation, DBSCAN clustering helped our work more stable and faster.
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1. Introduction

As the semiconductor design shrinks the physical design is more restricted by the lithography
constraint because the main patterning process is still mainly relies on 193 nm lithography
process. Thus, semiconductor design should be verified in the view of lithography process. The
optical rule check is the golden rule of physical design verification. It calculates a projected
image on silicon wafer using optical simulation, and then it finds problematic position from
the image. Though it has great hotspot detection performance, it requires heavy computational
cost due to its optical simulation process. It results in the slowdown of physical design
development.

Since the optical simulation based verification requires heavy time consumption, the
geometric verification methods have been introduced as an alternative. These methods have
fast detection speed because they don’t require optical simulation and infer the design layout
itself. The pattern matching based method [1-3] and machine learning based method [4-7]
was introduced.

The pattern matching method is useful for registered hotspot detection. It detects hotspots
by evaluating geometric similarity of the pattern in the test layout with registered hotspot
patterns. Though it is trustable for known hotspot, it has limit to find unknown hotspot and it
result in low detection accuracy.

The machine learning method is introduced to find unknown hotspots. The machine learns
the classification ability from known hotspot and non-hotspot dataset with supervised learning.
Since, it learns the characteristics of the geometry of hotspot/non-hotspot during the training,
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the trained model have ability to detect unknown hotspot.
But former machine learning method was accompanied by

complex frameworks including complex layout encoding (fea-
ture extraction) and multi classifier usage due to its low-perform-
ance model usage like support vector machine (SVM). In spite
of its unknown hotspot detection ability and its sophisticated
framework usage, it revealed high false positive in ICCAD2012
benchmark dataset [8].

To cope with it, we introduce convolutional neural network
(CNN) based hotspot method. The semiconductor layout is basi-
cally 2 dimensional image and it was proven to have great image
classification performance [9, 10]. Due to its self-trainable con-
volution filters which play a role good feature extractor we were
able to achieve better result using very simple framework: just
one classifier with simple density based layout encoding. We
made additional effort for improvement of our result. We first
found adequate CNN topology by evaluating various network
structures. And we augmented training data to prevent over-
fitting caused by low given samples of the dataset. Next we
applied candidate region to reduce the inspection region in the
test layout. Through these efforts, our method achieved 97.9%
of recall and 15.6% of precision which is better than previous
results [4, 5].

The remainder is organized as follows. In Section 2, we
introduce the proposed method including our overall framework,
hotspot model training and hotspot detection using trained CNN
classifier. In Section 3, the experiment in the view point of
detection performance and runtime is followed. The last section
concludes the paper.

2. Proposed Method

Our approach treats the lithography hotspot detection problem
because the semiconductor layout can be simply represented
as an image. Thus, our hotspot detection method follows tra-
ditional image detection method as shown in Figure 1. We
consider the test layout as an image and we find out the prob-
lematic points on the test layout using conventional sliding
window scan method. The calibrated CNN model evaluates
hotspot probability of each pixel during the sliding window
step. As a result of the inspection, we get the hotspot probabil-
ity map which indicates the hotspot probability of each pixel
location. Finally we convert hotspot probability map to final
hotspot coordinates in the test layout.

The CNN model is the key of our detection framework. This
model is calibrated with given hotspot and non-hotspot im-
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Figure 1. Our hotspot detection flow.

ages. In contrast to shallow machine learning like SVM, the
CNN learns feature extraction during training step. Thus the
CNN can be trained with high dimensional raw image without
handcrafted feature extraction. Figure 2 illustrates the feature
extraction and classification of a hotspot. An image with 76
pixel is convolved and shattered with multiple convolutional
weights. Through the convolution-pool steps the input image is
finally transformed to 80 ea of unit pixel image at CP4 step and
it is classified as a hotspot by fully connected layers (FC1,FC2).

The whole training / test sequence is described in Figure
3. The given hotspot and non-hotspot location is transformed
to two dimensional images through the density encoding step.
The number of train image set is increased using data augmen-
tation steps to prevent overfitting. The CNN is trained using
stochastic gradient decent method. The calibrated CNN model
is employed in hotspot detection task. Like the training step, the
first step of hotspot detection task is 2D image transform. The
candidate region generation which defines inspection is done
concurrently. Then, large 2D image is sliding-window-scanned
so that the hotspot probability map is derived. The hotspot
location is finally obtained through the density-based spatial
clustering (DBSCAN) on hotspot probability map.

2.1 Density Based Layout Encoding

Though the semiconductor layout represents binary image, its
GDSII format is different from conventional 2D pixelated image
format. Thus, various layout representation methods have been
proposed for machine learning or pattern matching purpose.
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Figure 3. Overall flow of train / test flow.

The most classic way is density based encoding. This method
converts the layout to 2D grayscale image convert it to 1D array
[6]. The novel methods with string based encoding [4] and edge
based encoding [5] were introduced too.

Our method is basically equal to density based encoding. But
there are two differences: The first difference is that we use
small image grid as 10nm to minimize the information loss
by aliasing. Though other works use large image grid due to
dimensionality issue [6, 7], The CNN can efficiently handle

Figure 4. The original layout and density encoded layout with 10 nm
image grid.

high dimensional image due to its convolution filter and pooling
operator. The other difference is that CNN can process 2D
image directly while previous density based layout encoding
flattened 2D image into 1D array to fit the data into shallow
models. The example of our layout encoding is illustrated in
Figure 4.

2.2 Training Data Augmentation

The number of given training sample in ICCAD2012 dataset
is very small. As shown in Table 1, it provides just 500-5000
samples. Thus, we applied data augmentation to increase the
number of training samples. The semiconductor layout pattern
cannot maintain similar characteristics through scaling, color
variation and rotation in same design level. Thus, the available
options are image shift and image flip transform.

We set different maximum shift value for each hotspot and
non-hotspot samples. We set 70 nm shift range for hotspot
samples for accurate localization and 600 nm shift range for
non-hotspot samples to learn plenty non-hotspot patterns to
reduce the false positive. Note that semiconductor layout has
much more various non-hotspot patterns than hotspot patterns.

Figure 5 describes the data augmentation process. First we
select the multiple random positions inside shift range and we
get the input images (780×780 nm2) and apply flip transform.
In addition, we adjust the number of sample selected inside
shift range to balance the HS (hotspot) / NHS (non-hotspot)
ratio. The result of data augmentation has more than 100,000
samples and the NHS/HS ratio is less than 5.

2.3 CNN Model Calibration

The network structure of our network is described in Table 2.
Our CNN model is composed of 4 conv-pool layers (CP) and
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Figure 5. Our data augmentation sequence composed of shift / filp
transform.

Table 1. ICCAD2012 Benchmark composition

Train Test
Dataset

#HS #NHS #HS #NHS

Benchmark 1 (3 nm) 99 340 226 319

Benchmark 2 (28 nm) 174 5285 499 4146

Benchmark 3 (28 nm) 909 4643 1847 3541

Benchmark 4 (28 nm) 95 4452 192 3386

Benchmark 5 (28 nm) 26 2716 42 2111

2 fully connected layers (FC). The each conv-pool layers have
Max-Pooling with ratio of 2 and rectified linear unit (reLU)
as activation function. Also each fully connected layers use
hyperbolic tangent (Tanh) as activation function. The output of
FC2 is converted to probability of hotspot by soft-max function
and its probability is converted to the cost using cross entropy
function. It is trained with stochastic gradient decent (SGD) to
reduce the cross entropy cost. The learning rate of SGD is 0.02
and mini batch size is 100. The stopping condition is when the
cost (cross entropy) is less than 0.005.

2.4 Hotspot Detection by Scanning Calibrated CNN Model

The Figure 1 illustrates hotspot detection using calibrated model.
The trained model scans the entire area to get a hotspot probabil-
ity map. This scan inspection step is time-challenging because

Figure 6. The example of candidate region (region in red). The
location of hotspot (black marks).

the structure of CNN is much heavier than SVM or ANN. To
reduce runtime, we reduce the scan inspection area defining
candidate regions and we scan not every pixel but every 5 pixels
for x and y directions considering the smoothness of probability
map.

Candidate region is the area which includes all possible
hotspots. This region is formed by expanding all layout vertices
to certain length. Figure 6 is the example of candidate region.
By identifying candidate regions, we can reduce the inspection
area to about 50% of the whole layout. Moreover, we can elimi-
nate false positives outside of the candidate region. We setup
the candidate region expanded 300 nm from the original layout
vertices. Note that the extension value is determined to cover
all given hotspot in the training layout.

2.5 Hotspot Coordinate Extraction with DBSCAN Clus-
tering

After we extract the hotspot probability map though the scan
step, the exact location of hotspot should be extracted. To
extract the location of hotspot, we find potential hotspot pixels
whose probability of hotspot is more than 0.5. Generally these
potential hotspot are clustered in certain location and we can
say this clustered points can be identified as one hotspot.

Thus we clarify the centers of potential hotspot clusters using
density-based spatial clustering (DBSCAN) [11] clustering.
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Figure 7. The example of hotspot detection in a layout clip. Potential
hotspot (dots), accepted clusters (circle) and not accepted cluster
(dashed circle).

DBSCAN clustering is useful for our requirement because it can
make arbitrary number of spatial clusters, and we can discard
insignificant potential hotspot clusters so that false positive is
reduced.

DBSCAN algorithm has two parameters to control. One
is minPts (minimum points) and the other is reachable range.
DBSCAN clustering accepts clusters if there are more than
minPts points within reachable range. Especially, for our work,
the minPts parameter plays a role of the threshold setting.

Figure 7 describes the example of a DBSCAN clustering
result. Two clusters are reported as hotspots (circle), while one
non-significant cluster is ignored (dashed circle).

3. Experiment Results

Our proposed method is implemented with an i7 CPU, a 64 GB
main memory and a GeForce TITAN X GPU. We use Theano
library [12] to train and test the CNN model. The proposed
method was evaluated using industrial benchmarks titled IC-
CAD2012 CAD dataset [8] described in Table 1. These 32 nm,
28 nm datasets has around 500-5000 clips whose size is around
5 µm square. Each clip in the train and test layouts includes
either HS (hotspot) or NHS (non-hotspot) core region which
indicates the location of hotspot or non-hotspot. In the training
step, the HS and NHS core regions indicates the location where

Table 2. The network topology of our CNN model

Case.1 CP1 CP2 CP3 CP4 FC1 FC2

# maps 22 40 60 80 100 2

Input
size

76 36 16 6

Filter
size

5 5 5 5

Max
Pool

2 2 2 2

Output
size

36 16 6 1

Activation reLU reLU reLU reLU Tanh Tanh

the hotspot and non-hotspot training samples are. Also, the HS
core region indicates the true hotspot locations for the hotspot
detection step.

The contest dataset also includes the reference verifier which
indicates the performance of the result. The verifier checks
whether the detected spots in the test layout are located near the
given HS core or not. If the spots are near given hotspot core
region with the distance of 1.2 µm, they become Hit, else they
will be Extra. For example, the rectangle in the center of Figure
7 is a hotspot core region. Since there is one detected hotspot
near the HS core region and the other far from the core region,
we have one Hit and one Extra from the Figure 7.

We convert the number of Hit and Extra (#Hit / #Extra) from
the result of the reference verifier to precision Eq. (1) and recall
Eq. (2) which is commonly used in evaluation criteria for image
detection task. The #HS means the number of given hotspot. If
more given hotspots are identified by hotspot detector, higher
recall will be reported. Likewise, if the detected points are more
likely to be Hit, the precision will be increased. Thus higher
precision and higher recall can be represented as superiority of
the detection method.

precision =
#Hit

#Hit +#Extra
, (1)

recall =
#Hit
#HS

. (2)

3.1 Network Topology Selection

We choose the topology of CNN through the evaluation of
detection performance. The precision-recall curve regarding
the stacks of convolution layers are illustrated in Figure 8. The
curve of our results is derived by sweeping the threshold value
(minPts of DBSCAN). We chose 4CONV-pool structure which

www.ijfis.org Deep Neural Network Based Lithography Hotspot Detection | 212



International Journal of Fuzzy Logic and Intelligent Systems, vol. 16, no. 3, September 2016

Figure 8. Detection performance with respect to network structure.

made best performance in Benchamrk1 dataset. The detailed
network topology is described in Table 2.

3.2 Performance Evaluation

We discuss our results of all test cases and compare it with
other methods. The methods proposed by B. Yu et al. [4] and
Y.-T. Yu et al. [5] employed multiple SVM classifiers assisted
their novel layout encoding methods. Though these SVM-based
methods achieved fairly high recall value, it is suffered from a
relatively low precision which is caused by high Extra (false
positives).

Though our approach uses very simple framework with just
one classifier, our result outperforms the other results in all cat-
egory in Table 3. Our high detection performance is mainly due
to the high performance of CNN classifiers and extra reduction
skills which includes DBSCAN clustering in Section 2.5 and
candidate region method in Section 2.4. The detection threshold
(minPts of DBSCAN clustering) is set to 7 for all Benchmarks.

Figure 9 shows the example of Hit, Missing, Extra patterns.
The dashed lines placed on the centers of images are the location
of true hotspot, and the red rectangles are the detected hotspot
locations by our method. The Hit in Figure 9(a) means the
detected points are located near hotspot location. The Extra in
Figure 9(b) indicate that the detected points are not near the
true hotspot position. The Missing in Figure 9(c) show that true
hotspots are failed to be detected.

3.3 Detection Time

Though we increased the detection performance using CNN
model, its heavy model structure is still remained to disadvan-
tage. Though GPU computation and other runtime reduction

Table 3. Detailed performance comparison

Test layout Methods Recall Precision
B. Yu [4] 0.810 0.202

Benchmark1 Y.-T. Yu [5] 0.947 0.125

Ours 0.951 0.306
B. Yu [4] 0.811 0.039

Benchmark2 Y.-T. Yu [5] 0.982 0.040

Ours 0.995 0.190
B. Yu [4] 0.909 0.089

Benchmark3 Y.-T. Yu [5] 0.919 0.109

Ours 0.985 0.138
B. Yu [4] 0.870 0.054

Benchmark4 Y.-T. Yu [5] 0.859 0.043

Ours 0.989 0.078
B. Yu [4] 0.805 0.047

Benchmark5 Y.-T. Yu [5] 0.929 0.031

Ours 0.976 0.068
B. Yu [4] 0.841 0.086

Average Y.-T. Yu [5] 0.927 0.070

Ours 0.979 0.156

(a)

(b) (c)

Figure 9. Example of Hit (a), Extra (b), and Missing (c).

methods are applied, it still takes heavy time to inspect the
layout. As shown in Table 4, it has normalized time is around
25-60 GPU h/mm2. Though our method is faster than optical
verification method whose runtime is over 100 CPU h/mm2, it
does not meet the of ICCAD2012 contest requirement (1-10
CPU h/mm2) [8]. But, we can see the normalized runtime is
proportional to the candidate region ratio (CR ratio). Thus we
can see the candidate region is efficient for detection time reduc-
tion. We will further conduct the research for detection runtime
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Table 4. Hotspot detection runtime

Test layout # of
Blocks

CRratio
(%)

Area
(mm2)

Test
time
(min)

Normalized
time

(h)/mm2

Benchmark1 541 16.6 0.0086 13 25.19

Benchmark2 4645 44.1 0.0743 224 50.25

Benchmark3 5282 63.4 0.0845 302 59.57

Benchmark4 3559 30.7 0.0569 121 35.44

Benchmark5 2152 33.8 0.0344 76 36.82

reduction.

4. Conclusion

We introduced an accurate hotspot detection framework using
convolutional neural network. It was combined by the powerful
classification performance of CNN, training data augmentation,
candidate region usage, and DBSCAN clustering, to make our
work better. Through these technical efforts, we were able to
outperform previous SVM based hotspot detection framework.
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