• 제목/요약/키워드: optical emission

검색결과 1,675건 처리시간 0.034초

Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Lee, Sang-Heon;Kim, Jong Su;Kim, Jin Soo;Kim, Do Yeob;Kim, Sung-O;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1205-1211
    • /
    • 2013
  • The structural and optical properties of the ZnO, Al-doped ZnO, Ga-doped ZnO, and In-doped ZnO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction, photoluminescence (PL) and ultraviolet-visible spectroscopy. All the nanorods grew with good alignment on the ZnO seed layers and the ZnO nanorod dimensions could be controlled by the addition of the various dopants. For instance, the diameter of the nanorods decreased with increasing atomic number of the dopants. The ratio between the near-band-edge emission (NBE) and the deep-level emission (DLE) intensities ($I_{NBE}/I_{DLE}$) obtained by PL gradually decreased because the DLE intensity from the nanorods gradually increased with increase in the atomic number of the dopants. We found that the dopants affected the structural and optical properties of the ZnO nanorods including their dimensions, lattice constants, residual stresses, bond lengths, PL properties, transmittance values, optical band gaps, and Urbach energies.

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide

  • Oh, Teresa;Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.207-212
    • /
    • 2014
  • Aluminum-doped zinc oxide (AZO) films were deposited on SiOC/Si wafer by an RF-magnetron sputtering system, by varying the deposition parameters of radio frequency power from 50 to 200 W. To assess the correlation of the optical properties between the substrate and AZO thin film, photoluminescence was measured, and the origin of deep level emission of AZO thin films grown on SiOC/Si wafer was studied. AZO formed on SiOC/Si substrates exhibited ultraviolet emission due to exciton recombination, and the visible emission was associated with intrinsic and extrinsic defects. For the AZO thin film deposited on SiOC at low RF-power, the deep level emission near the UV region is attributed to an increase of the variations of defects related to the AZO and SiOC layers. The applied RF-power influenced an energy gap of localized trap state produced from the defects, and the gap increased at low RF power due to the formation of new defects across the AZO layer caused by lattice mismatch of the AZO and SiOC films. The optical properties of AZO films on amorphous SiOC compared with those of AZO film on Si were considerably improved by reducing the roughness of the surface with low surface ionization energy, and by solving the problem of structural mismatch with the AZO film and Si wafer.

Er 이온 주입된 GaN의 광학적 특성 (Optical Properties of Er-implanted GaN)

  • 손창식
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1101-1105
    • /
    • 2005
  • We have investigated the optical properties of Erbium (Er)-implanted GaN by photoluminescence (PL). Various doses of Er ion were implanted on GaN epilayers by ion implantation. Visible green emission lines due to inner 4f shell transitions for $Er^{3+}$ were observed from the PL spectrum of Er-implanted GaN. The emission spectrum consists of two narrow green lines at 537 and 558 nm. The green emission lines are identified as $Er^{3+}$ transitions from the $^{5}H_{11/2}$ and $^{4}S_{3/2}$ levels to the $^{4}I_{15/2}$ ground state. The stronger peaks in the case with the dose of $5{\times}10^{14}cm^{-2}$, together with the relatively higher intensity of the $Er^{3+}$ luminescence in the lower doped sample. It implies that some damage remains in the case with the dose of $1{\times}10^{16}cm^{-2}$. The peak positions of emission lines due to inner 4f shell transitions for $Er^{3+}$ do not change with increasing temperature. It indicates that $Er^{3+}$ related emission depends very little on the ambient temperature.

$Cl_{2}O_{2}$ 가스에 의한 크롬 박막의 식각 특성 고찰 (The Etching Characteristics of Cr Films by Using $Cl_{2}O_{2}$ Gas Mixtures)

  • 박희찬;강승열;이상균;최복길;권광호
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.634-639
    • /
    • 2001
  • We investigated the etching characteristics of chromium films by using Cl$_2$/O$_2$ gas mixtures with electron cyclotron resonance plasma. In order to examine the chemical etch characteristics of Cr films by using Cl$_2$/O$_2$ gas plasma, we obtained the etch rate with various gas mixing ratios. By X-ray photoelectron spectroscopy, the surface reaction on the chromium films during the etch was examined. From narrow scan analyses of Cr, Cl, and O, it was confirmed that a chromium oxychlorie (CrCl$_{x}$O$_{y}$) layer was formed on the surface by the etch using Cl$_2$/O$_2$ gas mixtures. We observed a new characteristic emission line during the etch of chromium films using Cl$_2$/O$_2$ gas mixtures by an optical emission spectroscopy. It was found that the peak intensity of this emission line had a tendency compatible with the etch rate. The origin of this emission line was discussed in detail. At the same time, the etched profile was also examined by scanning electron microscope.e.e.

  • PDF

Investigating the accretion disk properties of young radio galaxies using the narrow-emission line diagnostics

  • 손동훈;우종학;;;;;김상철
    • 천문학회보
    • /
    • 제36권1호
    • /
    • pp.49.2-49.2
    • /
    • 2011
  • To investigate whether radio galaxies have systematically different accretion disk compared to radio-quiet AGN, we obtained high quality optical spectra for a sample of 22 young radio galaxies, using the KAST Double Spectrograph at the Lick 3-m telescope. Young radio galaxies are particularly useful since the age of the radio phenomena is comparable to that of accretion disk. Based on the optical emission-line diagnostics of narrow line region, which is thought to be photoionized by the nuclear radiation, we constrain the states of the accretion disk. In addition to strong emission lines, i.e., [O I], [O II], [O III], and [Ne III], we use the [Ar III] line to break the degeneracy between the ionization parameter and the SED shape. We find that young radio galaxies show systematically different emission line ratios compared to radio-quiet Type II AGN, suggesting that young radio galaxies probably have the power-law SED without a strong big blue bump. We will present the main results of the emission-line diagnostics.

  • PDF

적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선 (OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal)

  • 이진영;서석준;김대웅;허민;이재옥;강우석
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

전면 유기 발광 소자의 유기물층과 반투명 전극의 두께 변화에 따른 광학적 특성 (Organic-layer and semitransparent electrode thickness dependent optical properties of top-emission organic light-emitting diodes)

  • 안희철;주현우;나수환;한원근;김태완;이원재;정동회
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.57-58
    • /
    • 2008
  • We have studied an organic layer and semitransparent Al electrode thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top-emission device structure is Al(100nm)/TPD(xnm)/Alq(ynm)/LiF(0.5nm)/Al(25nm). While a thickness of total organic layer was varied from 85nm to 165n, a ratio of those two layers was kept to be about 2:3. Semitransparent Al cathode was varied from 20nm to 30nm for the device with an organic layer total thickness of 140nm. As the thickness of total organic layer increases, the emission spectra show a shift of peak wavelength from 490nm to 580nm, and the full width at half maxima from 90nm to 35nm. The emission spectra show a blue shift as the view angle increases. Emission spectra depending on a transmittance of semitransparent cathode show a shift of peak wavelength from 515nm to 593nm. At this time, the full width at half maximum was about to be a constant of 50nm. With this kind of microcavity effect, we were able to control the emission spectra from the top-emission organic light-emitting diodes.

  • PDF

Layer Thickness-dependent Electrical and Optical Properties of Bottom- and Top-emission Organic Light-emitting Diodes

  • An, Hui-Chul;Na, Su-Hwan;Joo, Hyun-Woo;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권1호
    • /
    • pp.28-30
    • /
    • 2009
  • We have studied organic layer-thickness dependent electrical and optical properties of bottom- and top-emission devices. Bottom-emission device was made in a structure of ITO(170 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(100 nm), and a top-emission device in a structure of glass/Al(100 nm)/TPD(x nm)/$Alq_3$(y nm)/LiF(0.5 nm)/Al(25 nm). A hole-transport layer of TPD (N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine) was thermally deposited in a range of 35 nm and 65 nm, and an emissive layer of $Alq_3$ (tris-(8-hydroxyquinoline) aluminum) was successively deposited in a range of 50 nm and 100 nm. Thickness ratio between the hole-transport layer and the emissive layer was maintained to be 2:3, and a whole layer thickness was made to be in a range of 85 and 165 nm. From the current density-luminance-voltage characteristics of the bottom-emission devices, a proper thickness of the organic layer (55 nm thick TPD and 85 nm thick $Alq_3$ layer) was able to be determined. From the view-angle dependent emission spectrum of the bottom-emission device, the peak wavelength of the spectrum does not shift as the view angle increases. However, for the top-emission device, there is a blue shift in peak wavelength as the view angle increases when the total layer thickness is thicker than 140 nm. This blue shift is thought to be due to a microcavity effect in organic light-emitting diodes.

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

Effect of Film Thickness on Structural, Electrical, and Optical Properties of Sol-Gel Deposited Layer-by-layer ZnO Nanoparticles

  • Shariffudin, S.S.;Salina, M.;Herman, S.H.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.102-105
    • /
    • 2012
  • The structural, electrical, and optical properties of layer-by-layer ZnO nanoparticles deposited using sol-gel spin coating technique were studied and now presented. Thicknesses of the thin films were varied by increasing the number of deposited layers. As part of our characterization process, XRD and FE-SEM were used to characterize the structural properties, current-voltage measurements for the electrical properties, and UV-Vis spectra and photoluminescence spectra for the optical properties of the ZnO thin films. ZnO thin films with thicknesses ranging from 14.2 nm to 62.7 nm were used in this work. Film with thickness of 42.7 nm gave the lowest resistivity among all, $1.39{\times}10^{-2}{\Omega}{\cdot}cm$. Photoluminescence spectra showed two peaks which were in the UV emission centered at 380 nm, and visible emission centered at 590 nm. Optical transmittance spectra of the samples indicated that all films were transparent (>88%) in the visible-NIR range. The optical band gap energy was estimated to be 3.21~3.26 eV, with band gap increased with the thin film thickness.