Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.4.207

Correlation Between Energy Gap and Defect Formation of Al Doped Zinc Oxide on Carbon Doped Silicon Oxide  

Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
Kim, Chy Hyung (Department of Applied Chemistry, Cheongju University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.4, 2014 , pp. 207-212 More about this Journal
Abstract
Aluminum-doped zinc oxide (AZO) films were deposited on SiOC/Si wafer by an RF-magnetron sputtering system, by varying the deposition parameters of radio frequency power from 50 to 200 W. To assess the correlation of the optical properties between the substrate and AZO thin film, photoluminescence was measured, and the origin of deep level emission of AZO thin films grown on SiOC/Si wafer was studied. AZO formed on SiOC/Si substrates exhibited ultraviolet emission due to exciton recombination, and the visible emission was associated with intrinsic and extrinsic defects. For the AZO thin film deposited on SiOC at low RF-power, the deep level emission near the UV region is attributed to an increase of the variations of defects related to the AZO and SiOC layers. The applied RF-power influenced an energy gap of localized trap state produced from the defects, and the gap increased at low RF power due to the formation of new defects across the AZO layer caused by lattice mismatch of the AZO and SiOC films. The optical properties of AZO films on amorphous SiOC compared with those of AZO film on Si were considerably improved by reducing the roughness of the surface with low surface ionization energy, and by solving the problem of structural mismatch with the AZO film and Si wafer.
Keywords
PL spectra; AZO; SiOC; DL emission; Luminescence; Roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, J. Appl. Phys., 105, 013502 (2009) [DOI: http://dx.doi.org/10.1016/j.tsf.2008.11.097].   DOI   ScienceOn
2 L. S. Vlasenko and G. D. Watkins, Phys. Lett. B, 71, 125210 (2005) [DOI: http://dx.doi.org/10.1103/PhysRevB.71.125210].   DOI   ScienceOn
3 H. Zeng, Z. Li, W. Cai, and P. Liu, J. Appl. Phys., 102, 104307 (2007) [DOI: http://dx.doi.org/10.1063/1.2803712].   DOI   ScienceOn
4 H. Hosono, J. Noncrystralline Solids, 352, 851 (2006) [DOI: http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.073].   DOI   ScienceOn
5 Y. Y. Peng, T. E. Hsieh, and C. H. Hsu, Nanotechnology, 17, 174 (2006) [DOI: http://dx.doi.org/10.1088/0957-4484/17/1/028].   DOI   ScienceOn
6 N. Kenji, K. Toshio, and H. J. Hideo, ECS Solid State Letters, 99, 053505 (2011) [DOI: http://dx.doi.org/10.1149/2.001405].
7 W. T. Chen, S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang, and C. C. Lee, IEEE Electron Device Lett., 32, 1552 (2011) [Doi: http://dx.doi.org/10.1109/LED.2011.2165694].   DOI   ScienceOn
8 S. Fernandez, A. Martinez-Steele, J. J. Gandia, and F. B. Naranjo, Thin Solid Films, 517, 3152 (2009) [DOI: http://dx.doi. org/10.1016/j.tsf.2008.11.097].   DOI   ScienceOn
9 T. Oh, IEEE Trans. Nanotechnology, 5, 23 (2006) [DOI: http://dx.doi.org/10.1109/TNANO.2005.858591].   DOI   ScienceOn
10 O. Mitrofanov and M. Manfra, J. Appl. Phys., 95, 6414 (2004) [DOI: http://dx.doi.org/10.1063/1.1719264].   DOI   ScienceOn
11 T. Oh and C. H. Kim, IEEE Trans. Plasma Science, 38, 1598 (2010) [DOI: http://dx.doi.org/10.1109/TPS.2010.2049665].   DOI   ScienceOn
12 M. S. Kim, K. G. Yim, G. Y. Leem, S. R. Kim, G. W. Nam, D. Y. Lee, J. S. Kim, and J. S. Kim, J. Korean Phys. Soc., 59, 2354 (2011). [DOI: http://dx. doi.org/ 10.3938/jkps.59.2354].   DOI   ScienceOn
13 T. E. Park, D. C. Kim, B. H. Kong, and H. K. Cho, J. Korean Phys. Soc., 45, S697 (2004). [DOI: http://dx.doi.org/ 10.3938/jkps.45.697].
14 J. Heo, H. J. Kim, J. H. Han, and J. W. Shon, Thin Solid Films, 515, 5035 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2006.10.095].   DOI   ScienceOn