• Title/Summary/Keyword: optical Band-Gap energy

Search Result 347, Processing Time 0.026 seconds

Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis

  • Sin, Chang-Mi;Ryu, Hyeok-Hyeon;Lee, Jae-Yeop;Heo, Ju-Hoe;Park, Ju-Hyeon;Lee, Tae-Min;Choe, Sin-Ho;Fei, Han Qi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.1-24.1
    • /
    • 2009
  • The zinc oxide (ZnO) material as the II-VI compound semiconductor is useful in various fields of device applications such as light-emitting diodes (LEDs), solar cells and gas sensors due to its wide direct band gap of 3.37eV and high exciton binding energy of 60meV at room temperature. In this study, the ZnO nanorods were deposited onto homogenous buffer layer/Si(100) substrates by a hydrothermal synthesis. The Effects of the buffer layer annealing and post annealing temperature on the structural and optical properties of ZnO nanorods grown by a hydrothermal synthesis were investigated. For the buffer layer annealing case, the annealed buffer layer surface became rougher with increasing of annealing temperature up to $750^{\circ}C$, while it was smoothed with more increasing of annealing temperature due to the evaporation of buffer layer. It was found that the roughest surface of buffer layer improved the structural and optical properties of ZnO nanorods. For the post annealing case, the hydrothermally grown ZnO nanorods were annealed with various temperatures ranging from 450 to $900^{\circ}C$. Similarly in the buffer layer annealing case, the post annealing enhanced the properties of ZnO nanorods with increasing of annealing temperature up to $750^{\circ}C$. However, it was degraded with further increasing of annealing temperature due to the violent movement of atoms and evaporation. Finally, the buffer layer annealing and post annealing treatment could efficiently improve the properties of hydrothermally grown ZnO nanorods. The morphology and structural properties of ZnO nanorods grown by the hydrothermal synthesis were measured by atomic force microscopy (AFM), field emission scanning electron microscopy (SEM), and x-ray diffraction (XRD). The optical properties were also analyzed by photoluminescence (PL) measurement.

  • PDF

Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods

  • Kim, Soaram;Park, Hyunggil;Nam, Giwoong;Yoon, Hyunsik;Kim, Jong Su;Kim, Jin Soo;Son, Jeong-Sik;Lee, Sang-Heon;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3335-3339
    • /
    • 2013
  • Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons ($D^{\circ}X$), and the first LO phonon replicas of $D^{\circ}X$, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni's empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.

Growth and Photocurrent Properties for $CuAlSe_2$ Single Crystal Thin film ($CuAlSe_2$ 단결정 박막의 성장과 광전류 특성)

  • Hong, Kwang-Joon;Baek, Seong-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.226-229
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68{\times}10^{-4}\;eV/K)T^2/(T+155K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Photocurrent Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $v_2$ 단결정 박막의 성장과 광전류 특성)

  • You, Sang-Ha;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.282-285
    • /
    • 2003
  • Single crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410\;^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}\;and\;295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68\;{\times}\;10^{-4}eV/K)T^2/(T\;+\;155\;K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_2$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\Delta$so definitely exists in the ${\Gamma}_5$ states of the valence band of the $CuAlSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and photocurrent properties for ZnO Thin Film by Pulsed Laser Deposition (펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 특성)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.74-75
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}cm^{-3}$ and $299cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 3.3973 eV - ($2.69{\times}10^{-4}$ eV/K)$T_2$/(T + 463 K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\triangle$so definitely exists in the $\ulcorner_6$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

Growth and Opoelectrical property for $AgGaSe_2$ single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Yun, Seuk-Jin;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.122-123
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.9501 eV - $(8.79{\times}10^{-4}\;eV/K)T^2$/(T+250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{1^-}$exciton peaks for n=1.

  • PDF

Influence of Electron Beam Irradiation on the Electrical Properties of Zn-Sn-O Thin Film Transistor (Zn-Sn-O 박막 트랜지스터의 전기적 특성에 대한 전자빔 조사의 영향)

  • Cho1, In-Hwan;Jo, Kyoung-Il;Choi, Jun Hyuk;Park, Hai-Woong;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2017
  • The effect of electron beam (EB) irradiation on the electrical properties of Zn-Sn-O (ZTO) thin films fabricated using a sol-gel process was investigated. As the EB dose increased, the saturation mobility of ZTO thin film transistors (TFTs) was found to slightly decrease, and the subthreshold swing and on/off ratio degenerated. X-ray photoelectron spectroscopy analysis of the O 1s core level showed that the relative area of oxygen vacancies ($V_O$) increased from 10.35 to 12.56 % as the EB dose increased from 0 to $7.5{\times}10^{16}electrons/cm^2$. Also, spectroscopic ellipsometry analysis showed that the optical band gap varied from 3.53 to 3.96 eV with increasing EB dose. From the results of the electrical property and XPS analyses of the ZTO TFTs, it was found that the electrical characteristic of the ZTO thin films changed from semiconductor to conductor with increasing EB dose. It is thought that the electrical property change is due to the formation of defect sites like oxygen vacancies.

Growth and Properties of CdS Thin films(A Study on the adhesion of II-VI compound semiconductor for applications in light emitting and absorbing devices) (CdS 박막제작 및 그 특성(발광 및 수광 소자 응용을 위한에 II-VI족 화합물 반도체들의 접착에 관한 기초연구))

  • Kang, Hyun-Shik;Cho, Ji-Eun;Kim, Kyung-Wha
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.55-66
    • /
    • 1997
  • The structural and optoelectronic properties of polycrystalline CdS films up to several microns in thickness, fabricated by three different methods, are compared to one another for the purpose of preparing CdTe/CdS solar cells. All films were deposited on an indium tin oxide on glass substrate. The three methods are: 1) alternated spraying of cation and anion solution at room temperature; 2) spray pyrolysis with substrate temperature up to $500^{\circ}C$; 3) chemical bath deposition (CBD). Deposited films were thermally treated in various ways. All films showed a well-developed wurtzite structure. Films grown by the alternated-spray method and the chemical bath method consist of randomly-oriented crystallites with dimensions <0.5 microns. Annealing at $400^{\circ}C$ increases the crystallite size slightly. Films which were grown by pyrolysis at substrate temperatures from $400^{\circ}C\;to\;500^{\cir\c}C$ were oriented in the <002> direction. For growth by pyrolysis at $500^{\circ}C$, the surface is rough on a lateral scale of 0.1 to 0.3 microns. The optical band gap and defect states are investigated by optical absorption, photoluminescene, Raman, and photothermal deflection spectroscopies.

  • PDF

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Effect of O2/Ar+O2 concentration on phase stability of transparent Mn doped SnO2 monolayer film (혼합기체 O2/Ar+O2 농도 변화가 Mn 도핑된 SnO2 투명전도막의 상 안정성에 미치는 영향)

  • Kim, Taekeun;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.154-158
    • /
    • 2021
  • The optical transmittance of Mn-doped SnO2 monolayer film increased gradually from 80.9 to 85.4 % at 550 nm wavelengths upon increasing the O2/Ar+O2 concentration rate from 0 to 7.9 % and the band gap energy changed from 3.0 to 3.6 eV. The resistivity tended to decrease from 3.21 Ω·cm to 0.03 Ω·cm, reaching a minimum at 2.7 %, and then gradually increased from 0.03 to 52.0 Ω·cm at higher O2/Ar+O2 gas concentration ratio. Based on XPS spectra analysis, the Sn 3d5/2 peak of Mn-doped SnO2 single layer shifted slightly from 486.40 to 486.58 and O1s peak also shifted from 530.20 to 530.33 eV with increase the O2/Ar+O2 concentration ratio. Therefore, the XPS spectra results indicate that a multiphase with SnO and SnO2 coexisted in the sputtered Mn-doped SnO2 monolayer film.