Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.4.216

Influence of Electron Beam Irradiation on the Electrical Properties of Zn-Sn-O Thin Film Transistor  

Cho1, In-Hwan (Neutron Utilization Research Division, Korea Atomic Energy Research Institute)
Jo, Kyoung-Il (Neutron Utilization Research Division, Korea Atomic Energy Research Institute)
Choi, Jun Hyuk (Neutron Utilization Research Division, Korea Atomic Energy Research Institute)
Park, Hai-Woong (Department of Energy Materials and Chemical Engineering, Korea University of Technology and Education)
Kim, Chan-Joong (Neutron Utilization Research Division, Korea Atomic Energy Research Institute)
Jun, Byung-Hyuk (Neutron Utilization Research Division, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.27, no.4, 2017 , pp. 216-220 More about this Journal
Abstract
The effect of electron beam (EB) irradiation on the electrical properties of Zn-Sn-O (ZTO) thin films fabricated using a sol-gel process was investigated. As the EB dose increased, the saturation mobility of ZTO thin film transistors (TFTs) was found to slightly decrease, and the subthreshold swing and on/off ratio degenerated. X-ray photoelectron spectroscopy analysis of the O 1s core level showed that the relative area of oxygen vacancies ($V_O$) increased from 10.35 to 12.56 % as the EB dose increased from 0 to $7.5{\times}10^{16}electrons/cm^2$. Also, spectroscopic ellipsometry analysis showed that the optical band gap varied from 3.53 to 3.96 eV with increasing EB dose. From the results of the electrical property and XPS analyses of the ZTO TFTs, it was found that the electrical characteristic of the ZTO thin films changed from semiconductor to conductor with increasing EB dose. It is thought that the electrical property change is due to the formation of defect sites like oxygen vacancies.
Keywords
Zn-Sn-O thin film; oxide semiconductor; electron beam irradiation; electrical property; oxygen vacancy; sol-gel;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Fortunato, P. Barquinha and R. Martins, Adv. Mater., 24, 2945 (2012).   DOI
2 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004).   DOI
3 S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 12, 013004 (2011).   DOI
4 A. Janotti and C. G. V. Walle, Phys. Rev. B: Condens. Matter., 76, 165202 (2007).   DOI
5 E. M. C. Fortunato, L. M. N. Pereira, P. M. C. Barquinha, A. M. B. do Rego, G. Goncalves, A. Vila', J. R. Morante and R. F. P. Martins, Appl. Phys. Lett., 92, 222103 (2008).   DOI
6 J. Y. Choi, S. S. Kim and S. Y. Lee, J. Nanosci. Nanotechnol., 13, 7089 (2013).   DOI
7 S. J. Kim, S. H. Yoon and H. J. Kim, Jpn. J. Appl. Phys., 53, 02BA02 (2014).   DOI
8 B. D. Ahn, J. S. Park and K. B. Chung, Appl. Phys. Lett., 105, 163505 (2014).   DOI
9 A. Indluru, K. E. Holbert and T. L. Alford, Thin Solid Films, 539, 342 (2013).   DOI
10 J. S. Lee, Y. J. Kim, Y. U. Lee, S. H. Cho, Y. H. Kim, J. Y. Kwon and M. K. Han, ECS Trans., 33, 283 (2010).
11 J. W. Lee and W. J. Cho, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 6 (2016).
12 E. J. Yun, J. W. Jung, Y. H. Han, M. W. Kim and B. C. Lee, J. Appl. Phys., 105, 123509 (2009).   DOI
13 Y. J. Kim, B. S. Yang, S. Oh, S. J. Han, H. W. Lee, J. Heo, J. K. Jeong and H. J. Kim, ACS Appl. Mater. Interfaces, 5, 3255 (2013).   DOI
14 H. W. Park, M. J. Choi, Y. Jo and K. B. Chung, Appl. Surf. Sci., 321, 520 (2014).   DOI
15 K. Jeon, S. W. Shin, J. Jo, M. S. Kim, J. C. Shin, C. Jeong, J. H. Lim, J. Song, J. Heo and J. H. Kim, Curr. Appl. Phys., 14, 1591 (2014).   DOI
16 H. W. Park, B. H. Jun, D. Choi and K. B. Chung, Jpn. J. Appl. Phys., 55, 115701 (2016).   DOI
17 Y. H. Kim, J. S. Heo, T. H. Kim, S. Park, M. H. Yoon, J. Kim, M. S. Oh, G. R. Yi, Y. Y. Noh and S. K. Park, Nature, 489, 128 (2012).   DOI