Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.11.3335

Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods  

Kim, Soaram (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Park, Hyunggil (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Nam, Giwoong (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Yoon, Hyunsik (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, Jong Su (Department of Physics, Yeungnam University)
Kim, Jin Soo (Research Center of Advanced Materials Development (RCAMD), Division of Advanced Materials Engineering, Chonbuk National University)
Son, Jeong-Sik (Department of Visual Optics, Kyungwoon University)
Lee, Sang-Heon (School of Chemical Engineering, Yeungnam University)
Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Publication Information
Abstract
Boron-doped ZnO (BZO) nanorods were grown on quartz substrates using hydrothermal synthesis, and the temperature-dependence of their photoluminescence (PL) was measured in order to investigate the origins of their PL properties. In the UV range, near-band-edge emission (NBE) was observed from 3.1 to 3.4 eV; this was attributed to various transitions including recombination of free excitons and their longitudinal optical (LO) phonon replicas, and donor-acceptor pair (DAP) recombination, depending on the local lattice configuration and the presence of defects. At a temperature of 12 K, the NBE produces seven peaks at 3.386, 3.368, 3.337, 3.296, 3.258, 3.184, and 3.106 eV. These peaks are, respectively, assigned to free excitons (FX), neutral-donor bound excitons ($D^{\circ}X$), and the first LO phonon replicas of $D^{\circ}X$, DAP, DAP-1LO, DAP-2LO, and DAP-3LO. The peak position of the FX and DAP were also fitted to Varshni's empirical formula for the variation in the band gap energy with temperature. The activation energy of FX was about ~70 meV, while that of DAP was about ~38 meV. We also discuss the low temperature PL near 2.251 eV, related to structural defects.
Keywords
Zinc oxide; B-doped; Hydrothermal; Nanorods; Photoluminescence;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Perez, J. Z.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Suleiman, M. A.; Shaer, A. E.; Mofor, A. C.; Postels, B.; Waag, A.; Boukos, N.; Trvalos, A.; Kwack, H. S.; Guinard, J.; Dang, D. L. S. Nonotechnology 2009, 20, 332001.   DOI   ScienceOn
2 Pearton, S. J.; Norton, D. P.; Heo, Y. W.; Tien, L. C.; Ivill, M. P.; Li, Y.; Kang, B. S.; Ren, F.; Kelly, J.; Hebard, A. F. J. Electron. Mater. 2006, 35, 862.   DOI
3 Kim, S.; Kim, M. S.; Yim, K. G.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. J. Korean Phys. Soc. 2012, 60, 1599.   DOI   ScienceOn
4 Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.   DOI   ScienceOn
5 Willander, M.; Yang, L. L.; Wadeasa, A.; Ali, S. U.; Asif, M. H.; Zhao, Q. X.; Nur, O. J. Mater. Chem. 2009, 19, 1006.   DOI   ScienceOn
6 Pawar, B. N.; Cai, G.; Ham, D.; Mane, R. S.; Ganesh, T.; Ghule, A.; Sharma, R.; Jadhava, K. D.; Han, S.-H. Sol. Energ. Mat. Sol. C 2009, 93, 524.   DOI   ScienceOn
7 Steinhauser, J.; Fay, S.; Oliveria, N.; Vallat-Sauvain, E.; Ballif, C. Appl. Phys. Lett. 2007, 90, 142107.   DOI   ScienceOn
8 Kim, S.; Kim, M. S.; Nam, G.; Leem, J.-Y. Electron. Mater. Lett. 2012, 8, 445.   DOI   ScienceOn
9 Lu, W.-L.; Hung, P.-K.; Hung, C.-I.; Yeh, C.-H.; Houng, M.-P. Mater. Chem. Phys. 2011, 130, 619.   DOI   ScienceOn
10 Zhu, L.; Li, J.; Ye, Z.; He, H.; Chen, X.; Zhao, B. Opt. Mater, 2008, 31, 237.   DOI   ScienceOn
11 Pineda-Hernandez, G.; Escobedo-Morales, A.; Pal, U.; Chigo-Anota, E. Mater. Chem. Phys. 2012, 135, 810.   DOI   ScienceOn
12 Kim, S.; Nam, G.; Park, H.; Yoon, H.; Lee, S.-H.; Kim, J. S.; Kim, J. S.; Kim, D. Y.; Kim, S.-O.; Leem, J.-Y. Bull. Korean Chem. Soc. 2013, 34, 1205.   DOI   ScienceOn
13 Fang, T.-H.; Kang, S.-H. Curr. Appl. Phys. 2010, 10, 1076.   DOI   ScienceOn
14 Kim, S.; Park, H.; Nam, G.; Yoon, H.; Kim, B.; Ji, I.; Kim, Y.; Kim, I.; Park, Y.; Kang, D.; Leem, J.-Y. Electron. Mater. Lett. (in press).
15 Wang, L.; Giles, N. C. J. Appl. Phys. 2003, 94, 973.   DOI   ScienceOn
16 Makino, T.; Segawa, Y.; Yoshida, S.; Tsukazaki, A.; Ohtomo, A.; Kawasaki, M.; Koinuma, H. J. Appl. Phys. 2005, 98, 093520.   DOI   ScienceOn
17 Zhang, B. P.; Binh, N. T.; Segawa, Y.; Kashiwaba, Y.; Haga, K. Appl. Phys. Lett. 2004, 84, 586.   DOI   ScienceOn
18 Peng, W. Q.; Qu, S. C.; Cong, G. W.; Wang, Z. G. Appl. Phys. Lett. 2006, 88, 101902.   DOI   ScienceOn
19 Yang, Z.; Liu, J. L. J. Vac. Sci. Technol. B 2010, 28(3), C3D6.   DOI   ScienceOn
20 He, H. P.; Tang, H. P.; Ye, Z. Z.; Zhu, L. P.; Zhao, B. H.; Wang, L.; Li, X. H. Appl. Phys. Lett. 2007, 90, 023104.   DOI   ScienceOn
21 Tuomisto, F.; Saarinen, K.; Look, D. C.; Farlow, G. C. Phys. Rev. B 2005, 72, 085206.   DOI   ScienceOn
22 Djurisic, A. B.; Leung, Y. H.; Tam, K. H.; Ding, L.; Ge, W. K.; Chen, H. Y.; Gwo, S. Appl. Phys. Lett. 2006, 88, 103107.   DOI   ScienceOn
23 Kim, S.; Nam, G.; Park, H.; Yoon, H.; Kim, M. S.; Kim, D. Y.; Kim, S.-O.; Leem, J. Y. J. Nanosci. Nanotechnol. 2013, 13, 6226.   DOI
24 Ting, C.-C.; Li, C.-H.; Kuo, C.-Y.; Hsu, C.-C.; Wang, H.-C.; Yang, M.-H. Thin Solid Films 2010, 518, 4156.   DOI   ScienceOn
25 Lyu, S. C.; Zhang, Ye.; Ruh, H.; Lee, H.-J.; Shim, H-.W.; Suh, E.-K.; Lee, C. J. Chem. Phys. Lett. 2002, 363, 134.   DOI   ScienceOn
26 Prezezdziecka, E.; Wachnicki, L.; Paszkowicz, W.; Lusakowska, E.; Krajewski, T.; Luka, G. Godlewski, M. Semicond. Sci. Technol. 2009, 24, 105014.   DOI   ScienceOn
27 Nam, G.; Lee, S.-H.; So, W.; Yoon, H.; Park, H.; Kim, Y. G.; Kim, S.; Kim, M. S.; Jung, J. H.; Lee, J.; Kim, Y.; Leem, J.-Y. Bull. Korean Chem. Soc. 2013, 34, 95.   DOI   ScienceOn
28 Reynolds, D. C.; Look, D. C.; Jogai, B. J. Appl. Phys. 2001, 89, 6189.   DOI   ScienceOn
29 Chen, R.; Xing, G. Z.; Gao, J.; Zhang, Z.; Wu, T.; Sun, H. D. Appl. Phys. Lett. 2009, 95, 061908.   DOI   ScienceOn
30 Nam, G.; Lee, S.-H.; Kim, S.; Kim, M. S.; Kim, D. Y.; Yim, K. G.; Lee, D.-Y.; Kim, J. S.; Kim, S. J.; Son, J.-S.; Kim, S.-O.; Jung, J. H.; Leem, J.-Y. Jpn. J. Appl. Phys. 2012, 51, 021102.   DOI
31 Hong, W.-K.; Jo, G.; Choe, M.; Lee, T.; Sohn, J. I.; Welland, M. E. Appl. Phys. Lett. 2009, 94, 043103.   DOI   ScienceOn
32 Teke, A.; Ozgur, U.; Dogan, S.; Gu, X.; Morkoc, H.; Nemeth, B.; Nause, J.; Everitt, H. O. Phys. Rev. B 2004, 70, 195207.   DOI   ScienceOn
33 Shan, W.; Walukiewicz, W.; Ager, J. W., III; Yu, K. M.; Yuan, H. B.; Xin, H. P.; Cantwell, G.; Song, J. J. Appl. Phys. Lett. 2005, 86, 191911.   DOI   ScienceOn
34 Jie, J.; Wang, G.; Chen, Y.; Han, X.; Wang, Q.; Xu, B. Appl. Phys. Lett. 2005, 86, 031909.   DOI   ScienceOn
35 Wang, L.; Giles, N. C. Appl. Phys. Lett. 2004, 84, 3049.   DOI   ScienceOn
36 Zhang, B. P.; Binh, N. T.; Segawa, Y.; Wakatsuki, K.; Usami, N. Appl. Phys. Lett. 2003, 83, 1635.   DOI   ScienceOn
37 Pankove, J. I. Optical Processes in Semiconductors; Prentice-Hall: Englewood Cliffs, New Jersey, 1971; p 143.
38 Varshini, Y. P. Physica (Amsterdam) 1967, 34, 149.   DOI   ScienceOn
39 Leroux, M.; Grandjean, N.; Beaumont, B.; Nataf, G.; Semond, F.; Massies, J.; Gibart, P. J. Appl. Phys. 1999, 86, 3721.   DOI   ScienceOn
40 Klingshirn, C. Semiconductor Optics; Springer: Berlin Heidelberg, 2004; p 222.