Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.3.155

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics  

Kim, In Young (Department of Material Science and Engineering, Chonnam National University)
Shin, Seung Wook (Department of Materials Science and Engineering, KAIST)
Kim, Min Sung (Department of Material Science and Engineering, Chonnam National University)
Yun, Jae Ho (Photovoltaic Research Group, Korea Institute of Energy Research)
Heo, Gi Seok (Korea Institute of Industrial Technology)
Jeong, Chae Hwan (Korea Institute of Industrial Technology)
Moon, Jong-Ha (Department of Material Science and Engineering, Chonnam National University)
Lee, Jeong Yong (Department of Materials Science and Engineering, KAIST)
Kim, Jin Hyoek (Department of Material Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.23, no.3, 2013 , pp. 155-160 More about this Journal
Abstract
ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.
Keywords
Mg and Ga co-doped ZnO (MGZO); transparent conductive oxide (TCO); quaternary compounds; RF magnetron sputtering technique; wide band gap energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. E. Marotti, D. N. Guerra, C. Bello, G. Machado and E. A. Dalchiele, Sol. Energy Mater. Sol. Cells, 82(1-2), 85 (2004).   DOI   ScienceOn
2 H. Shim, M. Sakuraba and J. Murota, Thin Solid Films, 508(1-2), 36 (2006).   DOI   ScienceOn
3 C S Son, Kor. J. Mater. Res., 21(3), 144-148 (2011).   DOI   ScienceOn
4 K. Bahedi, M. Addou, M. El Jouad, Z. Sofiani, H. El Oauzzani and B. Sahraoui, Appl. Surf. Sci., 257(18), 8003-8005 (2011).   DOI   ScienceOn
5 S. W. Shin, G. L. Agawane, I. Y. Kim, Y. B. Kwon, I. O. Jung, M. G. Gang, A. V. Moholkar, J. H. Moon, J. H. Kim and J. Y. Lee, Appl. Surf. Sci., 258(12), 5073-5079 (2012).   DOI   ScienceOn
6 S. W. Shin, H. S. Park, J. H. Moon, T. W. Kim and J. H. Kim, J. Kor. Inst. Met. & Mater., 46(4), 249-256 (2008).
7 X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng and H. Ma, J. Cryst. Growth, 274(3-4), 474 (2005).   DOI   ScienceOn
8 K. H. Ri, Y. Wang, W. L. Zhou, J. X. Gao, X. J. Wang and J. Yu, Appl. Surf. Sci., 258(4), 1283-1289 (2011).   DOI   ScienceOn
9 HYPERLINK "http://www.chalcogen.infim.ro/805_Vanalakar.pdf" S. A. Vanalakar, S. S. Mali, M. P. Suryavanshi, P. S. Patil Digest J. Nanomater. Biostruct., 5, 805 (2010).
10 K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films, 102(1), 1 (1983).   DOI   ScienceOn
11 Z. C. Jin, I. Hamberg and C. G. Granqvist, J. Appl. Phys., 64(10), 5117 (1988).   DOI
12 C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech and M. Wuttig, J. Appl. Phys., 95(4), 1911 (2004).   DOI   ScienceOn
13 S. W. Shin, S. M. Pawar, T. W. Kim, J. H. Moon and J. H. Kim, J. Mater. Res., 24(02), 441 (2009).   DOI
14 B. D. Ahn, S. H. Oh, C. H. Lee, G. H. Kim, H. J. Kim and S. Y. Lee, J. Cryst. Growth, 309(2), 128 (2007).   DOI   ScienceOn
15 A. Kaushal and D. Kaur, Sol. Energy Mater. Sol. Cells, 93(2), 193 (2009).   DOI   ScienceOn
16 D. Byrne, E. McGlynn, K. Kumar, M. Biswas, M. O. Henry and G. Hughes, Cryst. Growth Des., 10(5), 2400 (2010).   DOI   ScienceOn
17 S. W. Shin, I. Y. Kim, G. H. Lee, G. L. Agawane, A. V. Mohokar, G. S. Heo, J. H. Kim and J. Y. Lee, Cryst. Growth Des., 11(11), 4819 (2011).   DOI   ScienceOn
18 X. Zhang, H. Ma, Q. Wang, J. Ma, F. Zong, H. Xiao, F. Ji and S. Hou, Phys. B, (Amsterdam, Neth.), 364(1-4), 157 (2005).   DOI   ScienceOn
19 T. Minemoto, Y. Hashimoto, T. Satoh, T. Negami, H. Takakura and Y. Hamakawa, J. Appl. Phys., 89(12), 8327 (2001).   DOI   ScienceOn
20 Y. K. Hyun, J. W. Choi and D. H. Lee, Thin Solid Films, 302(1-2), 116 (1997).   DOI   ScienceOn
21 M. I. Medina-Montes, H. Arizpe-Chavez, L. A. Baldenegro-Perez, M. A. Quevedo-Lopez and R. Ramírez-Bon, J. Electron. Mater., 41(7), 1962 (2012).   DOI   ScienceOn
22 L. J. Meng and M. P. dos Santos, Vacuum, 46(8-10), 1001 (1995).   DOI   ScienceOn