• 제목/요약/키워드: operator.

검색결과 5,770건 처리시간 0.032초

MNO와 MVNO 사이의 무선 채널 공유를 위한 게임이론적 모델 (Game Theoretic Model for Radio Channel Sharing between MNO and MVNO)

  • 박재성;김범준
    • 한국정보과학회논문지:정보통신
    • /
    • 제37권4호
    • /
    • pp.312-316
    • /
    • 2010
  • 본 논문에서는 기지국 채널 자원을 MNO(Mobile Network Operator)와 MVNO(Mobile Virtual Network Operator)가 공유할 경우 사업자들에게 채널 자원을 공정하고 효율적으로 할당하기 위한 게임 이론적 모델을 제안한다. 제안 모델은 협상(Bargaining) 게임 이론을 이용하며 MNO와 MVNO의 입력 부하를 고려하여 이들 사이의 기지국 채널 자원을 할당한다. 제안 기법은 사업자별 입력 부하가 비대칭적인 경우 입력 부하가 낮은 사업자보다 입력 부하가 높은 사업자에게 보다 많은 양의 채널을 할당하여 기지국의 채널 이용율을 증가시키며 또한 한 사업자의 과도한 입력 부하로 인해 타 사업자의 서비스 품질이 저하되는 것을 방지한다.

PROPERTIES OF kth-ORDER (SLANT TOEPLITZ + SLANT HANKEL) OPERATORS ON H2(𝕋)

  • Gupta, Anuradha;Gupta, Bhawna
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.855-866
    • /
    • 2020
  • For two essentially bounded Lebesgue measurable functions 𝜙 and ξ on unit circle 𝕋, we attempt to study properties of operators $S^k_{\mathcal{M}({\phi},{\xi})=S^k_{T_{\phi}}+S^k_{H_{\xi}}$ on H2(𝕋) (k ≥ 2), where $S^k_{T_{\phi}}$ is a kth-order slant Toeplitz operator with symbol 𝜙 and $S^k_{H_{\xi}}$ is a kth-order slant Hankel operator with symbol ξ. The spectral properties of operators Sk𝓜(𝜙,𝜙) (or simply Sk𝓜(𝜙)) are investigated on H2(𝕋). More precisely, it is proved that for k = 2, the Coburn's type theorem holds for Sk𝓜(𝜙). The conditions under which operators Sk𝓜(𝜙) commute are also explored.

CONVERGENCE AND ALMOST STABILITY OF ISHIKAWA ITERATION METHOD WITH ERRORS FOR STRICTLY HEMI-CONTRACTIVE OPERATORS IN BANACH SPACES

  • Liu, Zeqing;Ume, Jeong-Sheok;Kang, Shin-Min
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권4호
    • /
    • pp.293-308
    • /
    • 2004
  • Let K be a nonempty convex subset of an arbitrary Banach space X and $T\;:\;K\;{\rightarrow}\;K$ be a uniformly continuous strictly hemi-contractive operator with bounded range. We prove that certain Ishikawa iteration scheme with errors both converges strongly to a unique fixed point of T and is almost T-stable on K. We also establish similar convergence and almost stability results for strictly hemi-contractive operator $T\;:\;K\;{\rightarrow}\;K$, where K is a nonempty convex subset of arbitrary uniformly smooth Banach space X. The convergence results presented in this paper extend, improve and unify the corresponding results in Chang [1], Chang, Cho, Lee & Kang [2], Chidume [3, 4, 5, 6, 7, 8], Chidume & Osilike [9, 10, 11, 12], Liu [19], Schu [25], Tan & Xu [26], Xu [28], Zhou [29], Zhou & Jia [30] and others.

  • PDF

Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm

  • Kaya, Mustafa
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.493-500
    • /
    • 2018
  • Due to the fact that the ratio of their height to their openings is very large compared to normal beams, there are difficulties in the design and analysis of deep beams, which differ in behavior. In this study, the optimum horizontal and vertical reinforcement diameters of 5 different beams were determined by using genetic algorithms (GA) due to the openness/height ratio (L/h), loading condition and the presence of spaces in the body. In this study, the effect of different mutation operators and improved double times sensitive mutation (DTM) operator on GA's performance was investigated. In the study following random mutation (RM), boundary mutation (BM), non-uniform random mutation (NRM), Makinen, Periaux and Toivanen (MPT) mutation, power mutation (PM), polynomial mutation (PNM), and developed DTM mutation operators were applied to five deep beam problems were used to determine the minimum reinforcement diameter. The fitness values obtained using developed DTM mutation operator was higher than obtained from existing mutation operators. Moreover; obtained reinforcement weight of the deep beams using the developed DTM mutation operator lower than obtained from the existing mutation operators. As a result of the analyzes, the highest fitness value was obtained from the applied double times sensitive mutation (DTM) operator. In addition, it was found that this study, which was carried out using GAs, contributed to the solution of the problems experienced in the design of deep beams.

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • 제55권1호
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

UNITARY INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제11권1_2호
    • /
    • pp.431-436
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;:\;y_i,\;for\;i\;=\;1,\;2,\;{\cdots},\;n$. In this article, we obtained the following : $Let\;x\;=\;\{x_i\}\;and\;y=\{y_\}$ be two vectors in a separable complex Hilbert space H such that $x_i\;\neq\;0$ for all $i\;=\;1,\;2;\cdots$. Let L be a commutative subspace lattice on H. Then the following statements are equivalent. (1) $sup\;\{\frac{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}y\$\mid$}{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}x\$\mid$}\;:\;l\;\in\;\mathbb{N},\;\alpha_{\kappa}\;\in\;\mathbb{C}\;and\;E_{\kappa}\;\in\;L\}\;<\;\infty\;and\;$\mid$y_n\$\mid$x_n$\mid$^{-1}\;=\;1\;for\;all\;n\;=\;1,\;2,\;\cdots$. (2) There exists an operator A in AlgL such that Ax = y, A is a unitary operator and every E in L reduces, A, where AlgL is a tridiagonal algebra.

군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구 (Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle)

  • 최상영;양지현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어 (Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator)

  • 김준식;우희진;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

PartitionTuner: An operator scheduler for deep-learning compilers supporting multiple heterogeneous processing units

  • Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
    • ETRI Journal
    • /
    • 제45권2호
    • /
    • pp.318-328
    • /
    • 2023
  • Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.