Received: 22 November 2021

Revised: 16 October 2022

Accepted: 25 October 2022

DOI: 10.4218/etrij.2021-0446

ORIGINAL ARTICLE

ETRIJournal WILEY

PartitionTuner: An operator scheduler for deep-learning
compilers supporting multiple heterogeneous processing

units
Misun Yu | Yongin Kwon | JeminLee | Jeman Park | Junmo Park |
Taeho Kim
Artificial Intelligence Research
Abstract

Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea

Correspondence

Misun Yu, Artificial Intelligence Research
Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.

Email: msyu@etri.re.kr

Funding information

IITP/MSIT, Grant/Award Numbers: 2018-
0-00769, 2022-0-00454

1 | INTRODUCTION

Deep neural networks (DNNs) have become a key solu-
tion to a range of application such as image classification,
object detection, and speech recognition. As deep
learning (DL) expands into various fields, improving the

Recently, embedded systems, such as mobile platforms, have multiple proces-
sing units that can operate in parallel, such as centralized processing units
(CPUs) and neural processing units (NPUs). We can use deep-learning
compilers to generate machine code optimized for these embedded systems
from a deep neural network (DNN). However, the deep-learning compilers
proposed so far generate codes that sequentially execute DNN operators on a
single processing unit or parallel codes for graphic processing units (GPUs).
In this study, we propose PartitionTuner, an operator scheduler for deep-
learning compilers that supports multiple heterogeneous PUs including CPUs
and NPUs. PartitionTuner can generate an operator-scheduling plan that
uses all available PUs simultaneously to minimize overall DNN inference
time. Operator scheduling is based on the analysis of DNN architecture and
the performance profiles of individual and group operators measured on
heterogeneous processing units. By the experiments for seven DNNs,
PartitionTuner generates scheduling plans that perform 5.03% better than a
static type-based operator-scheduling technique for SqueezeNet. In addition,
PartitionTuner outperforms recent profiling-based operator-scheduling
techniques for ResNet50, ResNetl18, and SqueezeNet by 7.18%, 5.36%, and
2.73%, respectively.

KEYWORDS
deep neural network, deep-learning compiler, parallel processing, partitioning

performance of DNN inference on resource-constrained
embedded systems has become a challenge. As one way
to increase the performance of DNN inference, embedded
systems with various processing units (PUs) such as cen-
tralized processing units (CPUs), graphic processing units
(GPUs), and neural processing units (NPUs) [1-3] have

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +
Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2023 ETRI

318 | wileyonlinelibrary.com/journal/etrij

ETRI Journal. 2023;45(2):318-328.

https://orcid.org/0000-0001-7319-1053
mailto:msyu@etri.re.kr
https://doi.org/10.4218/etrij.2021-0446
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2

YU ET AL.

been proposed. To efficiently run a DNN on the various
PUs, it is essential to convert the DNN operators into exe-
cutable code optimized to these PUs.

Existing DL compilers [4-8] automatically transform
the operators of a DNN into optimized machine code
that can be run on a target system. For example,
GLOW [8] and Tensorflow XLA [6] can generate opti-
mized code for CPUs and GPUs, respectively. TVM [4],
a representative open-source DL compiler, additionally
supports NPU as a backend, which can perform compu-
tationally intensive operations with low power and low
latency.

These DL compilers map operators in a DNN to
CPUs, GPUs, or NPUs in a target system according to the
choice of developers or the type of operators. However,
they cannot intelligently map DNN operators to hetero-
geneous PUs to minimize the total inference time. In
addition, the resource utilization of the codes generated
from the DL compilers is not high. The current DL com-
pilers such as TVM, GLOW (8], and XLA adopt a sequen-
tial approach for scheduling the execution of DNN
operators. Specifically, it is impossible to generate parallel
code that simultaneously performs independent opera-
tors in a single DNN on different PUs.

Recently, operator-scheduling techniques [9] have
been proposed to support automatic mapping to hetero-
geneous PUs in a system to reduce the total inference
time, but they target server systems with GPUs. If the tar-
get system contains NPUs, there are more considerations
for operator-scheduling than if the hardware system con-
tains only GPUs. Because the NPU is specialized for cer-
tain operations, such as general matrix multiplication
(GEMM), the NPU backend of the DL compiler may only
support those operations. Also, even if the operation is
supported by the NPU backend, it may be better not to
use the NPU because the overall execution time can take
more than the CPU due to the data-transfer overhead.
Therefore, a compiler-integrated = NPU-supported
operator-scheduling technique is needed to increase the
performance of DNN inference on NPU-embedding hard-
ware systems.

In this study, we introduce PartitionTuner (PT), an
operator-scheduling framework, which is integrated to
NEST-C [10], an open-source DL compiler that supports
NPU and CPU backends. PT determines which operators
in the DNN are mapped to which PUs in order to mini-
mize the total inference time of the final code generated
by the DL compiler. Based on this mapping result, it cre-
ates an operator-scheduling plan and final inference code
that can simultaneously execute several groups of opera-
tors. To the best of our knowledge, PT is the first profile-
based operator-scheduling framework integrated with an
open-source DL compiler that supports multiple

ETRI Journal—WI LEYM

heterogeneous PUs including NPUs. Our contributions
are summarized as follows:

« We propose PT, which is a profile-based DNN-opera-
tor-scheduling framework supporting operator-level
parallelism. PT is platform agnostic and can serve as a
general technique for DL compilation frameworks
such as TVM or XLA.

« We implemented PT and two other operators
scheduling techniques to demonstrate the feasibility
and efficiency of PT in an open-source DL compilation
framework named NEST-C that supports CPU and
NPU backends.

« We applied PT to a CPU-NPU hardware architecture
and performed performance experiments with seven
DNN:s. PartitionTuer is 5.03% better than a static type-
based operator-scheduling technique for SqueezeNet
and 7.18%, 5.36%, and 2.73% better than a profiling-
based operator-scheduling technique for ResNet50,
ResNet18, and SqueezeNet, respectively.

2 | MOTIVATION

In this section, we first discuss the weakness of previous
operator-scheduling techniques to apply to CPU-NPU
architecture, and then briefly explain our approach using
a simple DNN example.

TVM is a state-of-the-art DL compiler that supports a
NPU backend that can generate optimized code for NPU.
When generating code for a CPU-NPU architecture from
an input DNN, TVM maps NPU backends to Convolution
operators and CPU backends to other types of operators
because the NPUs (VTAs) supported by TVM can only
efficiently execute GEMM operations. In particular, TVM
maps an operator to a backend according to the type of
the operator. In addition, TVM generates code that exe-
cutes DNN operators sequentially on PUs. That is, TVM’s
operator-scheduling technique enforces type-based ping
and sequential execution policy (TypeSeq). Figure 1A
shows the final inference time of a DNN when using
TypeSeq on a CPU-NPU architecture. In the figure,
V1,...,V, represent the operators of an input DNN. Table 1
lists the execution time of individual and grouped
operators (Convolution 4+ ReLU) on the CPU and NPU.
According to TypeSeq, all Convolution operators are
mapped to the NPU and the total inference time becomes
235ms.

TypeSeq is simple and effective because Convolution
operators can be executed on NPUs faster than on CPUs.
However, according to the size of input data of operators,
using NPU may require more time than using CPU
due to data-transfer overheads. Therefore, recent DL

YU ET AL.

320—|—W1 LEY-ETRI Journal

: NPU-assigned operator

V1

v
VU3

Vg +
Vg
* vy

Vs

Vg Sum

Inference time = 23.5 ms
(A) (B)
FIGURE 1

() : CPU-assigned operator ©___} :Branch running in parallel

Inference time = 14.5 ms

O : Placeholder

Inference time = 12.5 ms

©

DNN inference time for different backend-mapping policies: (A) TypeSeq: static type-based ping + sequential execution,

(B) OpSeq: ping based on the execution time of individual operator + sequential execution, and (C) PartitionTuner: ping based on the

execution time of individual/grouped operators + parallel execution

TABLE 1 Example of operator execution time on CPU and NPU
Execution time (ms)

Operator CPU NPU

Vv 1 10

) 2 =

V3 10 2

Vs 10 2

Vs 1 -

Note: Execution time: computing time + data-transfer time; -: not supported.

compilers [9,11,12] adopt profiling-based operator-
scheduling policy in order to minimize the DNN infer-
ence time. In these policies, the final backends of DNN
operators are determined by the profiled execution time
of each DNN operator using the final code from the DL
compilers on PUs. Figure 1B shows the final inference
time of the DNN based on the execution time of each
operator instead of the TVM’s type-based ping (OpSeq).
By simply replacing the type-based backend-assignment
policy to the profiling-based one, we can reduce the infer-
ence time up to 9 ms.

However, recent operator-scheduling techniques
only consider CPUs and GPUs that are generally
designed to run all types of operations. Different from
CPUs and GPUs, NPUs are designed to execute certain
types of operations. In addition, NPU backends of DL
compilers can perform various kinds of operator
fusions to reduce computing time and remove commu-
nication overheads. For example, TVM combines

Execution time (ms)

Operator CPU NPU
Vg 1.0 1.5
V7 1.0 -

Vg 5.0 -

Vg + Vs 10.5 2.5
Ve + V7 1.5 2.0

Convolution, BatchNormalization, and ReLU operators
into a single one not to use memory for saving inter-
mediate results.

Therefore, we propose an operator-scheduling tech-
nique named PT that map operators to the backends by
considering the execution time of individual operators
and grouped (adjacently located) operators. In addition,
PT schedules parallel branches to run in parallel in case
of parallel branches with no data dependencies (indepen-
dent) and other backends mapped.

Figure 1C shows the backend-mapping result of PT
and the total inference time of the input DNN, which
consider the execution time of an individual operator and
grouped operators. The NPU is mapped to a ReLU if it
can execute Convolution and ReLU groups faster than
the CPU, although the CPU can execute ReLU operators
faster than the NPU. That is, while OpSeq maps the CPU
backend to vs, PT maps the NPU backend to reduce the
total inference time of the DNN. Figure 1B,C shows that

YU ET AL.

by executing v4 and vs on NPU, we can reduce the infer-
ence time of the DNN by 0.5 ms.

Furthermore, when independent branches are exe-
cuted in parallel, the total execution time of the DNN is
theoretically reduced by 1.5 ms. In this example, the total
inference time becomes 12.5 ms. Even when the vsz,v4,V5
and vg, V7 are executed sequentially, total inference time is
14 ms, which is faster than OpSeq. Therefore, the PT gen-
erates an operator-scheduling plan that takes less total
inference time than other operator-scheduling policies.

In the next section, we describe the detailed structure
and operator-scheduling algorithm of PT.

3 | DESIGN AND
IMPLEMENTATION OF PT

Figure 2 shows the structure of NEST-C, our open-source
DL compiler, integrated with PT. NEST-C, like recent
DL compilers [4, 6, 8], uses its frontend to perform
hardware-independent optimizations based on high-level
intermediate representation in the forms of a computa-
tion graph and then wuses its backend to perform
hardware-dependent optimizations and code generation.
In NEST-C, machine code for multiple heterogeneous
PUs is generated by backends using partitions that are
mapped to the backends by PT. Each partition is a sub-
graph of an input graph, and the execution order of parti-
tions is determined by PT. Figure 2 shows that PT takes a
computation graph in form of a directed acyclic graph

DNN model
NEST-C
A 4
1% | Model loader | 3
Ltl DAG-based HW-independent optimization | 1 E““
[1
E Branch extractor Backend finder !
k5 ' ‘
g Graph Partition
& partitioner scheduler
r s
|
y :
3
3 | HW-dependent optimization |
Q *]
S
7|

Backend-code generation |

1
€ Je el
code g code plan & code

FIGURE 2

Embedded
system

Overall structure of PartitionTuner

ETRI Journal—=WI LEYM

and generates backend-mapped partitions, as well as
partition-scheduling plan and code. For each partition,
different hardware-dependent optimizations are used as
per the mapped backends.

PT’s main functions are to profile the performance of
operators, map a backend to each operator, partition the
graph according to the mapped backends, and find parti-
tions that can run in parallel. These features are provided
by the five components of PT: profiler, branch extractor,
backend finer, graph partitioner, and partition scheduler.

The results of NEST-C includes PU-dependent and
scheduling codes. These codes are built together and
deployed to the target system. The target system herein is
an embedded system equipped with one CPU and NPU.

Figure 3 shows the execution steps of PT using these
five components and the brief description of each
component.

1. In the first step, the profiler maps backends to the indi-
vidual and group operators of the input graph, gener-
ates machine code from the indivisual and grouped
operators using the NEST-C backend, and measures
the execution time of the generated code. The mea-
sured execution time is recorded in the performance
profile.

2. In the second step, the branch extractor extracts the
information of sequential and parallel branches from
the input graph.

3. In the third step, the backend finder maps backends
and operators using the execution time of individual/
grouped operators in the performance profile to mini-
mize execution time.

4. In the fourth step, a partition is a group of consecutive
operators that are mapped the same backend. Each

Step 1: (Profiler) Measuring the execution time of backend
code generated from individual and grouped operators.

v

Step 2: (Branch Extractor) Extracting sequential and parallel
branches.

Step 3: (Backend Finer) Assigning a backend to an operator to
minimize the total inference time.

-

Step 4: (Graph Partitioner) Partitioning the DAG according
to the assigned backends.

Step 5: (Partition Scheduler) Generating the partition plan
and code for heterogeneous PUs after deciding whether to run
the partitions sequentially or in parallel.

FIGURE 3 Execution steps of PartitionTuner

il—Wl LEY-ETRI Journal

partition is sent to the HW-dependent optimization
and backend-code generation modules to generate the
machine code that can be run on a specific PU.

5. In the last step, the partition scheduler generates a
schedule plan that contains information about the
order in which the partitions created in the previous
step will be executed. At this stage, the partition
scheduler creates a schedule plan so that if parallel
branches are mapped to different backends, each
branch will run in parallel on a different PU. In this
case, each branch is a partition. The partition sched-
uler also generates C/C++ source code from the
schedule plan.

The following sections describe each component of
PT in detail.

3.1 | Profiler

The profiler of PT measures and records the execution
time of individual and grouped operators of an input
graph. Specifically, using the NEST-C backends, the
profiler can generate machine code for a partition that
contains a single or grouped operator. Users can
specify the operator types to be grouped. The execution
time of generated codes is then measured. Each
partition has its ID, which is created by successively
attaching the attributes of operators in a partition. The
attributes of an operator in PT represent the
characteristics of parameters to execute the operator
such as the type name, input size, and filter size.
Therefore, there may exist partitions with the same ID,
and in this case, only one partition’s execution time is
recorded.

3.2 | Branch extractor

In PT, the backend mapping and the graph partitioning
are done on the branches of a graph. We make the defini-
tion of a branch and parallel branch as Definitions 1
and 2.

Definition 1 (Branch) For any directed
acyclic graph DAG G(V,E), a branch
consists only of sequential nodes and forms a
separate path with other branches in
the DAG.

Definition 2 (Parallel branch) Two branches
are parallel if they have the same input and
output node.

YU ET AL.
(O :Placcholder (] :Operator 77 :Branch
Branch 2-1 Branch 2-2
Level =2 Level =2
ID=2

ID=3

FIGURE 4 Example of branches

Figure 4 shows an illustrative example of a graph that
has branches. In Figure 4, Branch 3 includes two opera-
tors v;-v, and sends its output to Branches 2-1 and 2-2.
Branches 2-1 and 2-2 share the input and output node;
thus, they are parallel. Branch 1 includes a single node
vg. In PT, a branch has two attributes to represent the
identity and parallelism: ID and level. Every branch has a
different ID, and only parallel branches have the same
level.

3.3 | Backend finder

The backend finder of PT maps a backend to an operator
based on the performance profile generated from the pro-
filer. The performance profile includes the execution time
of machine codes that execute individual or grouped
operators on PUs. In NEST-C, available backends are the
CPU and NPU backends, which can generate machine
codes for ARM/X86 CPU and EVTA NPU.! Therefore,
the profiling and backend mapping of PT is performed
for these two PUs. The backend mapping of PT is per-
formed on a dynamic programming basis to minimize
the total execution time. In addition, users can specify
the types of consecutive operators that can be grouped
for the profiler and backend finder. We specified Convo-
lution and ReLU operators, as a group.

3.4 | Graph partitioner

After finishing the mapping of backends to the operators
in an input graph, the graph partitioner of PT partitions

YU ET AL.

the graph. Partitioning is splitting a graph as subgraphs
or partitions. Operators in a partition are mapped to the
same backend. The left side of Figure 5 shows four parti-
tions of the graph in Figure 4. The graph partitioner takes
a branch list as an input from the branch extractor, tra-
verses the operators of each branch sequentially, groups
consecutive operators, and maps the same backend to the
same partition. When an operator in which a new back-
end is mapped appears, a new partition is created.

3.5 | Partition scheduler

After partitioning a graph, the partition scheduler of the
PT decides the execution order of the graph partitions
(subgraphs). Partitions in the sequential branches are
executed sequentially. Partitions in the parallel branches
can be executed in parallel when different backends are
mapped to them.

Figure 5 shows an example of partitions that are exe-
cuted sequentially or in parallel. In this figure, p2 and p3
are parallel branches and mapped different backends.
Therefore, they can run in parallel on target platforms
containing two different PUs (CPU and NPU).

Based on the decided execution order, the partition
scheduler generates a scheduling plan and program code.
The scheduling plan and program code are logically iden-
tical. The difference is that the scheduling plan is inde-
pendent of specific target hardware or programming
language. An example of a scheduling plan and program
code is shown on the right side of Figure 5. In the sched-
uling plan, we use the “parallelPartitions” keyword to
indicate that p2 and p3 are parallel partitions that can be
run in parallel on different PUs. In the program code, p2
and p3 are executed in parallel using threads.

(O :Placeholder () :Operator | _! :Partition

Scheduling plan

numOfPartitions: 4
backendNames:
CPU:NPU:CPU:CPU
partitionNames: p1:p2:p3:p4
nodeToPartition:

v1l-pl:v2-pl

:v3-p2:v4-p2

:v5-p3

v6-p4:v7-p4
ParallelPartitions: (p2| | p3)

$

Scheduling code

Int main()
{
initializeMemory();

p1();

Thread t1(p2, argl);
Thread t2 (p3, arg2);
p4();
releaseMemory();
return 0;

-

FIGURE 5 Example of a partitions and schedule plan

ETRI Journal—WI LEYJﬁ

4 | EXPERIMENTS AND
EVALUATION
4.1 | Implementation setup

We implemented PT in our NEST-C open-source DL
compilation framework that is based on the GLOW [8].
We reused GLOW’s CPU backend to generate the
machine code for the quad-core ARM Cortex-A53 CPU of
the Xilinx ZCU102 platform. The frequency of the CPU is
set at 1200 MHz. To generate machine code for NPU, we
implemented the EVTA backend in NEST-C. EVTA is a
type of NPU and an extension of the VTA [13]. EVTA
supports only the 8-bit integer precision and conducts a
16 x 16 GEMM operation at once. Therefore, we quantize
the weight and input data of operators to compute the
operators on EVTA. The frequency of EVTA is set at
333 MHz. We implemented the EVTA on the FPGA of
the Xilinx ZCU102 platform.

The EVTA backend of NEST-C can generate instruc-
tions for Convolution operators of the ONNX operator set
[14] and can fuse Convolution and ReLU to execute effi-
ciently by not using slow external memory (RAM).

4.2 | Experimental setup

4.2.1 | Machine environment

We evaluate the performance of PT and two other
operator-scheduling techniques mentioned in Section 2
in terms of inference time. All operator-scheduling
techniques are integrated into NEST-C, and the perfor-
mance is the inference time of the final code generated
from NEST-C. All operator-scheduling techniques share
NEST-C’s frontends and backends. We also provide the
performance using only the CPU backend (Baseline) to
demonstrate the performance gains that can be
achieved by wusing NPUs. All operator-scheduling
techniques subject to performance comparison are as
follows:

« Single partition on CPU (Baseline)
All operators are mapped to the CPU backend and exe-
cuted sequentially.

« Static type-based backend mapping and sequential exe-
cution (TypeSeq)
Convolution and subsequent ReLU operators are
mapped to the EVTA backend. Other operators are
mapped to the CPU backend. All operators are exe-
cuted sequentially.

« Backend mapping based on the execution time of indi-
vidual operators and sequential execution (OpSeq)

il—Wl LEY-ETRI Journal

YU ET AL.

Operators are mapped to backends according to the
execution time of an individual operator on the CPU
and EVTA. All operators are executed sequentially.
« PT

Operators are mapped to backends according to the
execution time of individual and grouped operators on
the CPU and EVTA and can be executed in parallel if
different backends are mapped to them.

Note that the EVTA backend that we implemented
can handle only 16 x 16 GEMM operations; therefore,
TypeSeq, OpSeq, and PT map the EVTA backend only to
the Convolution operators with the number of input
channels and the number of filters that are multiples of
16. Furthermore, the EVTA backend of NEST-C can fuse
a Convolution operator and a consecutive ReLU operator
into a single Convolution operator similar to other DL
compilers [4, 15]. Therefore, we can use EVTA for a
ReLU operator if a ReLU operator is placed immediately
after a Convolution operator in a partition.

4.2.2 | Benchmarks and datasets

We focus our evaluation on inference time of the final
code generated from NEST-C. We evaluate the execution
time of compiled models that are trained on the Ima-
geNet [16] data set. Our evaluation is performed using a
set of seven well-known pretrained CNN models: ZFNet
[17], AlexNet [18], GoogleNet [19], ResNet18/50 [20],
ResNeXt [21], and SqueezeNet [22]. We downloaded
these models from the ONNX model Zoo [23]. Among
these CNN models, all models except ZFNet and Alex-
Net have parallel branches. The number of parallel
branches in the models is listed in the second column of
Table 3. Table 2 shows the inference time of benchmark
models. The first and second columns of Table 2 list the

TABLE 2 Benchmark information and inference time

Benchmarks

Name Size (Mbytes) Baseline (CPU)
ZFNet 349 2435.17

AlexNet 244 860.10
GoogleNet 171 1465.80
ResNet50 103 3183.74
ResNeXt50 100 6638.85
ResNet18 47 1269.18
SqueezeNet 5 298.64

name and size of benchmark models, and other columns
list the inference time of Baseline, TypeSeq, OpSeq,
and PT.

We compiled the seven benchmark models using our
NEST-C compilation framework, which generates
machine codes based on the backends that are mapped to
partitions. We measured the averaged inference time of
the compiled codes over 1,000 runs with different input
images. There were little variations in all cases.

4.3 | Performance evaluation

Table 2 shows the end-to-end inference time of
partitioned models by the Baseline and three operator-
scheduling techniques (TypeSet, OpSeq, and PT). All
three operator-scheduling techniques provide better
performance than Baseline by using EVTA to compute
the Convolution and ReLU operators. The performance
improvement rates of the three operator-scheduling
techniques compared with the Baseline are shown in
Figure 6. We calculated the performance improvement
rate (Pl,e) of a specific scheduling technique (T1) com-
pared with another scheduling technique (T2), as shown
in the formula as follows.

Pliae = (T2 — T1)/T2 % 100. (1)

Figure 6 shows that for all benchmark models. Except
AlexNet, the performance improvement is over 30%. Par-
ticularly, the performance improvement rate of three
operator-scheduling techniques reaches approximately
80% for ResNet50 and ResNet18. In case of AlexNet, only
a single Convolution operator was mapped to the NPU
by the three operator-scheduling techniques as shown in
the fourth to sixth columns of Table 3. Therefore, the per-
formance improvement of AlexNet was relatively small

Time (ps)

TypeSeq OpSeq PT

CPU 4 NPU

1694.38 1699.78 Same as TypeSeq
810.73 810.92 Same as TypeSeq
482.30 507.09 Same as TypeSeq
636.19 684.15 635.04

3959.94 3952.10 3928.46
249.03 262.57 248.49
195.46 190.83 185.62

YU ET AL.

compared with other models, whereas more Convolution
operators were mapped to the NPU for other models, and
the performance improvement rate of the models was
higher than that of AlexNet.

When only the three operator-scheduling techniques
were compared, the profiling-based techniques (OpSeq
and PT) performed better than TypeSeq for ResNeXt50
and SqueezeNet. However, OpSeq showed lower perfor-
mance than TypeSeq for all other benchmark models. This
is because OpSeq maps the backend to operators based on
the execution time of the individual operators running on
the PU. This means that the Convolution and ReLU oper-
ators run fast on the NPU and CPU individually but can
run faster when run sequentially on the NPU. However,
OpSeq only considers the performance of individual oper-
ators, so it maps those operators to different backends.

OpSeq’s backend-mapping method, which does not
take into account the characteristics of NPU, divided four
benchmark models (ZFNet, GoogleNet, ResNet50, and
ResNet18) into more partitions, as shown in the Table 4,
causing more execution time. Therefore, OpSeq allows
NEST-C to generate less performing code than TypeSeq

ETRI Journal—WI LEYJﬁ

and PT. For AlexNet, the execution time of final code by
OpSeq is slower than those by TypeSeq and PT although
the number of partitions is the same. This is because one
ReLU operator that appeared after a Convolution opera-
tor is mapped to the CPU instead of being mapped to the
NPU as can be seen in the eighth column of Table 3.

PT showed higher than or equal to performance to
other two techniques. For ZFNet, AlexNet, and Google-
Net, PT generated the same backend-mapping and
execution-scheduling results to TypeSeq. As we can see,
the second column of Table 2, the size of three bench-
mark models is relatively larger than other models. How-
ever, for other models such as ResNet18/50, ResNeXt50,
ResNet18, and SqueezeNet, PT performed better than
TypeSeq. From these results, it can be seen that PT is
more effective than TypeSeq for small-sized DNN models
in terms of inference time. Additionally, PT can generate
the parallel execution schedule for parallel branches;
thus, it could find two and eight branches that can be exe-
cuted on the CPU and EVTA in parallel from ResNet18
and SqueezeNet as seen in the 10th column of Table 3.

As a result, PT generated faster code than TypeSeq by
5.03% for SqueezeNet and than OpSeq by 7.18%, 5.36%,

80 1 g E)YPSCS“I- A el and 2.73% for ResNet50, ResNetl8, and SqueezeNet,
3 pSeq i
S 70 EB@PT i
Q M—FR a
< ml L
= 601]] TABLE 4 Number of partitions
2 1 H
é 1 il i # Partitions
[0 HH -
E 401 l i Benchmarks Baseline TypeSeq OpSeq PT
§ 30 il i ZFNet 1 5 10 5
2 L] il
2 207] i AlexNet 1 3 3 3
!49 HH -
= 104 Il i GoogleNet 1 34 69 34
oL lad AR AL I Ml A0 A1 ResNet50 1 34 98 34
el el et Q Q \% el
BT 00 o8 ot o ™ ResNexXts0 1 65 65 65
ResNet18 1 17 33 18
FIGU R E 6 Reduction rate of inference time compared with SqueezeNet 1 25 29 23
the Baseline
TABLE 3 Allocated backends for Convolution and ReLU operators
Benchmarks # Convolution on VTA # ReLU on VTA
Parallelly
Name # Parallel # Conv. TypeSeq OpSeq PT TypeSeq OpSeq PT executable partitions
branches found by PT
ZFNet 0 5 4 4 4 6 0 6 0
AlexNet 0 5 1 1 1 1 0 1 0
GoogleNet 36 57 52 49 52 18 0 18 0
ResNet50 8 53 52 52 52 48 0 32 0
ResNeXt50 8 53 36 36 36 16 0 9 0
Resnet18 6 20 19 18 18 16 0 8 2
SqueezeNet 16 26 24 18 18 8 0 1 8

YU ET AL.

326—|—W1 LEY-ETRI Journal

respectively. In particular, PT shows the highest perfor-
mance for ResNet50, ResNeXt50, and ResNet18 despite
the number of partitions are greater or equal to TypeSeq
as seen in Table 4. This result represents that PT can map
DNN operators to optimal backends that can minimize
the total inference time.

Figure 7 shows the inference accuracy of Baseline,
TypeSeq, OpSeq, and PT for four benchmark models. The
accuracy of final NEST-C codes using all operator-
scheduling techniques is lower than that using Baseline
because it only uses the CPU backend performing floating-
point operations but others use the EVTA backend per-
forming integer operations for Convolution operators.

The accuracy of TypeSeq, OpSeq, and PT depends on
the number of Convolution operators running on EVTA.
That is, the greater the number of operators performed in
EVTA, the lower the accuracy. Among TypeSeq, OpSeq,
and PT, TypeSeq generated the code having the lowest
accuracy for SqueezeNet, but there was little difference
between the three operator-scheduling techniques for
other benchmark models.

5 | RELATED WORK

5.1 | DL compilers
Because of the difficulty of deploying and efficiently exe-
cuting DNNs on various hardware platforms, several DL
compilers have been proposed such as Tensor Compre-
hensions [24], Tensorflow XLA [6], nGraph [5], GLOW
[8], and TVM [4]. They take DNNs that are created from
DL frameworks such as Tensorflow, Pytorch, and Caffe
and generate machine codes that can run on the various
hardware platforms embedding heterogeneous PUs.

XLA can generate codes for GPU and Google TPU
[25]. However, the DL applications for an embedded

X3 Baseline - -
23 TypeSeq. _ N
0.8 1 == OpSeq M [
[__ |
PT) b W
| p— A m ME XE ~ -
>‘0.6 i i i |}
2 1 MIEH XTEH K
= —
= H | | | |
S 04] 1 1 i i
<% i 1 xTH KIH
[MIE MIE NIE
0.2 1 i ME WIH NIE
I MIH NiH W(H
0 A \} Q ? A8
et o pet S) K\ "
75 X %oo‘é\e (e ‘es“e‘ﬁ (e $(\\)ee7»°

FIGURE 7 Inference accuracy

system should be energy efficient and may have restric-
tions on the use of the GPU. The hybrid transformer of
nGraph [5] maps complex operators (subgraphs) to Intel
Nervana NNP to speed up the computation and the
remaining operators to the CPU. Like nGraph, TVM can
map the NPU backend to Convolution operators and the
CPU backend to other types of operators. Glow [8] also
can partition its computation graphs by operator types or
graph size but can only generate CPU codes.

Genesis [26] is a DL compiler that integrates graph
partitioning functionalities into TVM. Genesis has a simi-
lar structure to NEST-C. However, PT of NEST-C auto-
matically generates an optimal partition of a
computation graph that simultaneously uses the hetero-
geneous PUs of a target platform.

5.2 | DL graph partitioning and
scheduling

Recently proposed techniques automatically partition a
computation graph and find operator-level parallelism
based on performance profiling to minimize inference
time of a DNN. RAMMER [12] partitions a computation
graph and maps them to virtualized parallel devices
(vDevices) that are mapped to a physical accelerator dur-
ing runtime. The objective of RAMMER is to maximize
the utilization of a single hardware accelerator such as
GPU and IPU. IOS [11] automatically schedules multiple
operators on a GPU to reduce CNN inference time by
improving the GPU utilization. IOS finds the paralleliz-
able operators using a dynamic programming algorithm.
DUET [9] automatically maps the branches of a DNN to
CPUs and GPUs in a target system to improve concur-
rency and reduce the total inference time.

The objective of PT is to reduce the execution time of
final code produced by the DL compilers supporting
NPUs. To do that, it maps DNN operators to the back-
ends of DL compilers and finds parallel branches that
can be executed in parallel on heterogeneous PUs.

6 | CONCLUSION

With the advent of embedded devices including various
DL accelerators, a hardware basis has been established
to increase the performance of DNNs using the special-
ized functions of these accelerators and parallel proces-
sing technology using multiple accelerators. We
proposed an operator-scheduling technique for effi-
ciently using these multiple accelerators. The proposed
technique integrated with a DL compiler can generate
high-performance codes through profiling-based

YU ET AL.

ETRI Journal—WI LEYM

performance analysis of PUs and parallelism analysis of
DNNs. The experimental results show that the proposed
technique generates faster code in terms of inference
time than TypeSeq by 5.03% for SqueezeNet and than
OpSeq by 7.18%, 5.36%, and 2.73% for ResNet50,
ResNet18, and SqueezeNet, respectively. In the future,
we will test the performance of PT in an embedded sys-
tem with multiple DL accelerators. Also, we have a
plan to integrate our PT into the other open-source DL
compilers such as TVM and XLA to broadly validate its
efficiency and usefulness.

ACKNOWLEDGMENT

This work was supported by Institute of Information &
communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT)
(No. 2018-0-00769: Neuromorphic Computing Software
Platform for Artificial Intelligence Systems and
No0.2022-0-00454: Technology development of smart edge
device SW development platform).

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.

ORCID

Misun Yu © https://orcid.org/0000-0001-7319-1053

REFERENCES

1. HISILICON, Kirin, 2022. https://www.hisilicon.com/en/
products/Kirin

2. NVIDIA, Jetson, 2022. https://www.nvidia.com/en-us/

autonomous-machines/embedded-systems/jetson-orin/

3. Samsung, Exynos, 2022. https://semiconductor.samsung.com/
processor/mobile-processor/

4. T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M.
Cowan, L. Wang, Y. Hu, L. Ceze, and C. Guestrin, TVM: An
automated end-to-end optimizing compiler for deep learning,
(13th USENIX Symposium on Operating Systems Design and
Implementation, Carlsbad, CA, USA), 2018, pp. 578-594.

5. S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M.
Brookhart, A. Chakraborty, W. Constable, C. Convey, L. Cook,
O. Kanawi, R. Kimball et al., Intel nGraph: An intermediate
representation, compiler, and executor for deep learning, arXive
preprint, 2018. https://doi.org/10.48550/arXiv.1801.08058

6. C. Leary and T. Wang, XLA: TensorFlow, compiled, 2017. Ten-
sorFlow Dev Summit.

7. W.-F. Lin, D.-Y. Tsai, L. Tang, C.-T. Hsieh, C.-Y. Chou, P.-H.
Chang, and L. Hsu, ONNC: A compilation framework
connecting ONNX to proprietary deep learning accelerators,
(IEEE International Conference on Artificial Intelligence Cir-
cuits and Systems, Hsinchu, Taiwan), 2019, pp. 214-218.

8. N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R.
Dzhabarov, N. Gibson, J. Hegeman, M. Lele, R. Levenstein,
and J. Montgomery, Glow: Graph lowering compiler techniques

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

for neural networks, arXive preprint, 2018. https://doi.org/10.
48550/arXiv.1805.00907

M. Zhang, Z. Hu, and M. Li, DUET: A compiler-runtime sub-
graph scheduling approach for tensor programs on a coupled
CPU-GPU architecture, (IEEE International Parallel and Dis-
tributed Processing Symposium, IEEE Portland, OR, 2021,
pp. 151-161.

ETRI, NEST-C, 2021. https://github.com/etri/nest-compiler

Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, IOS: Inter-
operator scheduler for CNN acceleration, Proc. Machine Learn.
Syst. 3 (2021), 167-180.

L. Ma, Z. Xie, Z. Yang, J. Xue, Y. Miao, W. Cui, W. Hu, F.
Yang, L. Zhang, and L. Zhou, RAMMER: Enabling holistic deep
learning compiler optimizations with rTasks, (14th USENIX
Symposium on Operating Systems Design and Implementa-
tion), 2020, pp. 881-897.

T. Moreau, T. Chen, Z. Jiang, L. Ceze, C. Guestrin, and A.
Krishnamurthy, VTA: an open hardware-software stack for
deep learning, arXive preprint, 2018. arXiv preprint arXiv:
1807.04188. https://doi.org/10.48550/arXiv.1807.04188

ONNX, ONNX operators, 2022. https://github.com/onnx/
onnx/blob/main/docs/Operators.md

Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y.
Shan, and Y. Wang, DNNVM: End-to-end compiler leveraging
heterogeneous optimizations on FPGA-based CNN accelerators,
IEEE Trans. Comput.-Aided Design Integrated Circ. Syst. 39
(2020), no. 10, 2668-2681.

J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei,
ImageNet: A large-scale hierarchical image database, (IEEE
Conference on Computer Vision and Pattern Recognition
IEEE, Miami, FL, USA), 2009, pp. 248-255.

M. D. Zeiler and R. Fergus, Visualizing and understanding con-
volutional networks, European Conference on Computer Vision,
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, (eds.),
Springer, Cham, 2014, pp. 818-833.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classi-
fication with deep convolutional neural networks, Commun.
ACM. 60 (2017), no. 6, 84-90.

C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions,
(Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA), 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition, (Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV,
USA), 2016, pp. 770-778.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, Aggregated
residual transformations for deep neural networks,
(Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Honolulu, HI, USA), 2017,
pp. 1492-1500.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5MB model size, arXive preprint,
2016. https://doi.org/10.48550/arXiv.1602.07360

ONNX, Onnx model zoo, 2022. https://github.com/onnx/
models

N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, Tensor
comprehensions: Framework-agnostic high-performance

https://orcid.org/0000-0001-7319-1053
https://orcid.org/0000-0001-7319-1053
https://www.hisilicon.com/en/products/Kirin
https://www.hisilicon.com/en/products/Kirin
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://semiconductor.samsung.com/processor/mobile-processor/
https://semiconductor.samsung.com/processor/mobile-processor/
https://doi.org/10.48550/arXiv.1801.08058
https://doi.org/10.48550/arXiv.1805.00907
https://doi.org/10.48550/arXiv.1805.00907
https://github.com/etri/nest-compiler
https://doi.org/10.48550/arXiv.1807.04188
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://github.com/onnx/onnx/blob/main/docs/Operators.md
https://doi.org/10.48550/arXiv.1602.07360
https://github.com/onnx/models
https://github.com/onnx/models

YU ET AL.

MW] LEY-ETRI Journal

machine learning abstractions, aeXive preprint, 2018. https://
doi.org/10.48550/arXiv.1802.04730

25. N. P. Jouppi, C. Young, N. Patil, et al., In-datacenter perfor-
mance analysis of a tensor processing unit, (Proceedings of the
44th Annual International Symposium on Computer Architec-
ture, Association for Computing Machinery, Toronto,
Canada), 2017, pp. 1-12.

26. Z. Chen, C. H. Yu, T. Morris, J. Tuyls, Y. H. Lai, J. Roesch,
E. Delaye, V. Sharma, and Y. Wang, Bring your own codegen to
deep learning compiler, arXive preprint, 2021. https://doi.org/
10.48550/arXiv.2105.03215

AUTHOR BIOGRAPHIES

Misun Yu received the M.S. degree
from the Department of Computer
Science and Engineering at Pohang
University of Science and Technol-
ogy, Republic of Korea. She is a prin-
cipal researcher at the Electronics
and Communications Research Insti-
tute (ETRI), Daejeon, Republic of Korea. Her main
research interests include concurrent program analy-
sis, software testing, deep learning, and embedded
systems.

Yongin Kwon received the B.-
Sc. degree in Electrical and Elec-
tronic Engineering from the Korea
Advanced Institute of Science and
Technology, South Korea, in 2008,
and M.S. and Ph.D. degrees in Elec-
trical and Computer Engineering
from Seoul National University, South Korea, in 2010
and 2015, respectively. From 2015 to 2019, he worked
at Samsung Electronics as a staff software engineer.
He has been with Electronics and Telecommunica-
tions Research Institute (ETRI) since 2019, where he
is currently a senior researcher. His research interests
include neural processing units, compiler, deep learn-
ing, and embedded systems.

Jemin Lee received the B.S. and Ph.
D. degrees in Computer Science and
Engineering from Chungnam
- National University in 2011 and
j 2017, respectively. He is a senior
‘ p - h researcher at the Electronics and
Communications Research Institute
(ETRI). He was a postdoctoral researcher at the Korea
Advanced Institute of Science and Technology
(KAIST) in 2017-2018. His research interests include
energy-aware mobile computing and deep-learning
compiler.

Jeman Park received his B.S., M.S.,
and Ph.D. degrees in Electronics and
Computer Engineering in Hanyang
University, Republic of Korea, in
2004, 2006, and 2014, respectively.
‘ in h Since 2019, he has been with Elec-

tronics and Telecommunications
Research Institute, Daejeon, Republic of Korea, where
he is now a senior researcher. His main research
interests are computer network, edge computing, and
Al compiler.

Junmo Park received the
B.S. degree in Computer Science
~= = from Kwangwoon University in 2012
== ~ and the M.S. degree with the Gradu-
\\?l' ate School of Convergence Science
‘\ N h and Technology at Seoul National
University, South Korea, in 2020. He
joined Samsung Electronics, Hwaseong, South Korea,
in 2012, where he is involved in compiler optimiza-
tion and development. He has been working for
mobile GPU compiler since 2020 as a staff software
engineer. His research interests include deep learning,
compiler, embedded systems, HW/SW codesign, and
optimizations.

Taeho Kim received the B.S. degree
from Sungkyunkwan University in
1995 and the M.S. and Ph.D. degrees
from the Department of Computer
Science, KAIST, in 1997 and 2005,
respectively. He is currently assistant
vice president of AI SoC Research
Division, ETRI. His research interests are safety-
critical and intelligent cyber-physical systems, system
software, and software engineering.

How to cite this article: M. Yu, Y. Kwon, J. Lee,
J. Park, J. Park, and T. Kim, PartitionTuner: An
operator scheduler for deep-learning compilers
supporting multiple heterogeneous processing units,
ETRI Journal 45 (2023), 318-328. https://doi.org/
10.4218/etrij.2021-0446

https://doi.org/10.48550/arXiv.1802.04730
https://doi.org/10.48550/arXiv.1802.04730
https://doi.org/10.48550/arXiv.2105.03215
https://doi.org/10.48550/arXiv.2105.03215
https://doi.org/10.4218/etrij.2021-0446
https://doi.org/10.4218/etrij.2021-0446

