• Title/Summary/Keyword: operator-valued measure

Search Result 24, Processing Time 0.024 seconds

ON SOME PROPERTIES OF BOUNDED $X^{*}$-VALUED FUNCTIONS

  • Yoo, Bok-Dong
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.25-27
    • /
    • 1994
  • Suppose that X is a Banach space with continuous dual $X^{**}$, ($\Omega$, $\Sigma$, ${\mu}$) is a finite measure space. f : $\Omega\;{\longrightarrow}$ $X^{*}$ is a weakly measurable function such that $\chi$$^{**}$ f $\in$ $L_1$(${\mu}$) for each $\chi$$^{**}$ $\in$ $X^{**}$ and $T_{f}$ : $X^{**}$ \longrightarrow $L_1$(${\mu}$) is the operator defined by $T_{f}$($\chi$$^{**}$) = $\chi$$^{**}$f. In this paper we study the properties of bounded $X^{*}$ - valued weakly measurable functions and bounded $X^{*}$ - valued weak* measurable functions.(omitted)

  • PDF

Unbounded Scalar Operators on Banach Lattices

  • deLaubenfels, Ralph
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.1-19
    • /
    • 1986
  • We show that a (possibly unbounded) linear operator, T, is scalar on the real line (spectral operator of scalar type, with real spectrum) if and only if (iT) generates a uniformly bounded semigroup and $(1-iT)(1+iT)^{-1}$ is scalar on the unit circle. T is scalar on [0, $\infty$) if and only if T generates a uniformly bounded semigroup and $(1+T)^{-1}$ is scalar on [0,1). By analogy with these results, we define $C^0$-scalar, on the real line, or [0. $\infty$), for an unbounded operator. We show that a generator of a positive-definite group is $C^0$-scalar on the real line. and a generator of a completely monotone semigroup is $C^0$-scalar on [0, $\infty$). We give sufficient conditions for a closed operator, T, to generate a positive-definite group: the sequence < $\phi(T^{n}x)$ > $_{n=0}^{\infty}$ must equal the moments of a positive measure on the real line, for sufficiently many positive $\phi$ in $X^{*}$, x in X. If the measures are supported on [0, $\infty$), then T generates a completely monotone semigroup. On a reflexive Banach lattice, these conditions are also necessary, and are equivalent to T being scalar, with positive projection-valued measure. T generates a completely monotone semigroup if and only if T is positive and m-dispersive and generates a bounded holomorphic semigroup.

  • PDF

BARRELLEDNESS OF SOME SPACES OF VECTOR MEASURES AND BOUNDED LINEAR OPERATORS

  • FERRANDO, JUAN CARLOS
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1579-1586
    • /
    • 2015
  • In this paper we investigate the barrellednes of some spaces of X-valued measures, X being a barrelled normed space, and provide examples of non barrelled spaces of bounded linear operators from a Banach space X into a barrelled normed space Y, equipped with the uniform convergence topology.

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL APPLIED TO MULTIPLE INTEGTALS

  • Kim, Bong-Jin
    • The Pure and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.71-78
    • /
    • 2001
  • In 1984, Johnson[A bounded convergence theorem for the Feynman in-tegral, J, Math. Phys, 25(1984), 1323-1326] proved a bounded convergence theorem for hte Feynman integral. This is the first stability theorem of the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory. Johnson and Lapidus [Generalized Dyson series, generalized Feynman digrams, the Feynman integral and Feynmans operational calculus. Mem, Amer, Math, Soc. 62(1986), no 351] studied stability theorems for the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory for the functional with arbitrary Borel measure. These papers treat functionals which involve only a single integral. In this paper, we obtain the stability theorems for the Feynman integral as an $L(L_1 (\mathbb{R}^N), L_{\infty}(\mathbb{R}^{N}))$theory for the functionals which involve double integral with some Borel measures.

  • PDF