• Title/Summary/Keyword: operator space

Search Result 972, Processing Time 0.026 seconds

Exploring the Contributory Factors of Confined Space Accidents Using Accident Investigation Reports and Semistructured Interviews

  • Naghavi K., Zahra;Mortazavi, Seyed B.;Asilian M., Hassan;Hajizadeh, Ebrahim
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.305-313
    • /
    • 2019
  • Background: The oil and gas industry is one of the riskiest industries for confined space injuries. This study aimed to understand an overall picture of the causal factors of confined space accidents through analyzing accident reports and the use of a qualitative approach. Methods: Twenty-one fatal occupational accidents were analyzed according to the Human Factors Analysis and Classification System approach. Furthermore, thirty-three semistructured interviews were conducted with employees in different roles to capture their experiences regarding the contributory factors. The content analyses of the interview transcripts were conducted using MAXQDA software. Results: Based on accident reports, the largest proportions of causal factors (77%) were attributed to the organizational and supervisory levels, with the predominant influence of the organizational process. We identified 25 contributory factors in confined space accidents that were causal factors outside of the original Human Factors Analysis and Classification System framework. Therefore, modifications were made to deal with factors outside the organization and newly explored causal factors at the organizational level. External Influences as the fifth level considered contributory factors beyond the organization including Laws, Regulations and Standards, Government Policies, Political Influences, and Economic Status categories. Moreover, Contracting/Contract Management and Emergency Management were two extra categories identified at the organizational level. Conclusions: Preventing confined space accidents requires addressing issues from the organizational to operator level and external influences beyond the organization. The recommended modifications provide a basis for accident investigation and risk analysis, which may be applicable across a broad range of industries and accident types.

Space Design Marketing of Floating Architecture and Its Spatial Demands (플로팅건축물의 공간디자인마케팅과 공간수요 예측)

  • Pak, Sung-Sine
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.329-334
    • /
    • 2015
  • Currently, image of floating architecture has been positively improved based on the normalization of a domestic representative floating building 'Some Sevit'. Features of the floating architecture are as follows: special experience (29.9%)> landmark (27.6%)> enjoyment of marine culture (21.5%)> center for tourism and regional development (16.0%)> eco-friendly space solving global warming (4.8%). Floating building has a distinctive image and at the same time offers a unique spatial experience to the public. Therefore, space design marketing of floating building is a communication process to exchange its spatial identity and image between the local government and the public, the corporation and customers. It is essential for the effective space design marketing that the spatial demands should be reflected into its program such as commercial, cultural and marina facilities. The unification of project leader and operator is also important. The transformed conditions would help the construction market to be active in the future.

Parametric Equation of Hough Transform for Log-Polar Image Representation (로그폴라 영상 표현을 위한 매개변수 방정식의 Hough 변환)

  • Choi, Il;Kim, Dong-su;Chien, Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.455-461
    • /
    • 2002
  • This paper presents a new parametric log line equation of polar form for Hough transform in log-polar plane, in which it can remove the well-known unboundedness problem of Hough parameters. Bolduc's method is used to generate a log-polar image dividing the fovea and periphery from a Cartesian image. Edges of the fovea and periphery are detected by using the Sobel mask and the proposed space-variant gradient mask, and are combined in the log-polar plane. The sampled points that might constitute a log line are quite sparse in a deep peripheral region due to severe under-sampling, which is an inherent property of LPM. To cope with such under-sampling, we determine the values of cumulative cells in Hough space by using the space-variant weighting. In our experiments, the proposed method demonstrates its validity of detecting not only the lines passing through both the fovea and periphery but also the lines in a deep periphery.

Performance Enhancement of a Satellite's Onboard Antenna Tracking Profile using the Ground Station Searching Method

  • Song, Young-Joo;Lee, Jung-Ro;Kang, Jihoon;Jeon, Moon-Jin;Ahn, Sang-Il
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.391-400
    • /
    • 2016
  • In satellite operations, stable maneuvering of a satellite's onboard antenna to prevent undesirable vibrations to the satellite body is required for high-quality high-resolution images. For this reason, the onboard antenna's angular rate is typically minimized while still satisfying the system requirement that limits the speed of the onboard antenna. In this study, a simple yet effective method, called the ground station searching method, is proposed to reduce the angular rate of a satellite's onboard antenna. The performance of the proposed method is tested using real flight data from the KOMPSAT-3 satellite. Approximately 83% of arbitrarily selected real flight scenarios from 66 test cases show reductions in the onboard antenna's azimuth angular rates. Additionally, reliable solutions were consistently obtained within a reasonably acceptable computation time while generating an onboard antenna tracking profile. The obtained results indicate that the proposed method can be used in real satellite operations and can reduce the operational loads on a ground operator. Although the current work only considers the KOMPSAT-3 satellite as a test case, the proposed method can be easily modified and applied to other satellites that have similar operational characteristics.

Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

  • Park, Sang-Wook;Lee, Young-Ran;Lee, Byoung-Sun;Hwang, Yoo-La;Galilea, Javier Santiago Noguero
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.635-642
    • /
    • 2009
  • This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator's tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system's quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

ON THE M-SOLUTION OF THE FIRST KIND EQUATIONS

  • Rim, Dong-Il;Yun, Jae-Heon;Lee, Seok-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.235-249
    • /
    • 1995
  • Let K be a bounded linear operator from Hilbert space $H_1$ into Hilbert space $H_2$. When numerically solving the first kind equation Kf = g, one usually picks n orthonormal functions $\phi_1, \phi_2,...,\phi_n$ in $H_1$ which depend on the numerical method and on the problem, see Varah [12] for more details. Then one findes the unique minimum norm element $f_M \in M$ that satisfies $\Vert K f_M - g \Vert = inf {\Vert K f - g \Vert : f \in M}$, where M is the linear span of $\phi_1, \phi_2,...,\phi_n$. Such a solution $f_M \in M$ is called the M-solution of K f = g. Some methods for finding the M-solution of K f = g were proposed by Banks [2] and Marti [9,10]. See [5,6,8] for convergence results comparing the M-solution of K f = g with $f_0$, the least squares solution of minimum norm (LSSMN) of K f = g.

  • PDF

Robustness of Independent Modal Space Control for Parameter and Modal Filter Errors (파라메터오차 및 모달필터오차에 대한 독립모달공간 제어기법의 강인성 해석)

  • Hwang, Jai-Hyuk;Kim, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3549-3559
    • /
    • 1996
  • In this study, the effect of parameter and modal filter errors on the vibration control characteristics of flexible structures is analyzed for IMSC ( Independent Modal Space Control). If the control force is designed on the basis of the mathematical model with the parameter and modal filter errors, the closed-loop performance of the vibration control system will be degraded depending on the magnitude of the errors. An asymptotic stability condition of the system with parameter and modal filter errors has more significant effect on the stability condition of the system with parameter and modal filter errors has been drived using Lyapunov approach. It has been found that modal filter error has more significant effect on the stability of closed-loop system than parameter error does. The extent of the response deviation of the closed-loop system is also derived and evaluated using operator thchniques.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

LK-BIHARMONIC HYPERSURFACES IN SPACE FORMS WITH THREE DISTINCT PRINCIPAL CURVATURES

  • Aminian, Mehran
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1221-1244
    • /
    • 2020
  • In this paper we consider LK-conjecture introduced in [5, 6] for hypersurface Mn in space form Rn+1(c) with three principal curvatures. When c = 0, -1, we show that every L1-biharmonic hypersurface with three principal curvatures and H1 is constant, has H2 = 0 and at least one of the multiplicities of principal curvatures is one, where H1 and H2 are first and second mean curvature of M and we show that there is not L2-biharmonic hypersurface with three disjoint principal curvatures and, H1 and H2 is constant. For c = 1, by considering having three principal curvatures, we classify L1-biharmonic hypersurfaces with multiplicities greater than one, H1 is constant and H2 = 0, proper L1-biharmonic hypersurfaces which H1 is constant, and L2-biharmonic hypersurfaces which H1 and H2 is constant.

A Study of Spacecraft Alignment Measurement with Theodolite (데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구)

  • Yun,Yong-Sik;Park,Hong-Cheol;Son,Yeong-Seon;Choe,Jong-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • A measurement of spacecraft alignment is an important process of spacecraft assembly, integration and test. Because, it is necessary that a operator of a ground station controls the precise positions of on-orbit spacecraft by using the alignment data of attitude orbit control sensors(AOCS) on spacecraft. And, an accuracy of spacecraft alignment requirement is about $0.1^{\circ}{\sim}0.7^{\circ}$. A spacecraft alignment is measured by autocollimation of theodolite. This paper describes the measurement principle and method of spacecraft alignment. The result shows that all the AOCS on the spacecraft are aligned within the tolerance required through the alignment measurement.