• Title/Summary/Keyword: operator inequalities

Search Result 135, Processing Time 0.026 seconds

NEW INEQUALITIES VIA BEREZIN SYMBOLS AND RELATED QUESTIONS

  • Ramiz Tapdigoglu;Najwa Altwaijry;Mubariz Garayev
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.109-120
    • /
    • 2023
  • The Berezin symbol à of an operator A on the reproducing kernel Hilbert space 𝓗 (Ω) over some set Ω with the reproducing kernel kλ is defined by $${\tilde{A}}(\lambda)=\,\;{\lambda}{\in}{\Omega}$$. The Berezin number of an operator A is defined by $$ber(A):=\sup_{{\lambda}{\in}{\Omega}}{\mid}{\tilde{A}}({\lambda}){\mid}$$. We study some problems of operator theory by using this bounded function Ã, including estimates for Berezin numbers of some operators, including truncated Toeplitz operators. We also prove an operator analog of some Young inequality and use it in proving of some inequalities for Berezin number of operators including the inequality ber (AB) ≤ ber (A) ber (B), for some operators A and B on 𝓗 (Ω). Moreover, we give in terms of the Berezin number a necessary condition for hyponormality of some operators.

GENERALIZED SYSTEM FOR RELAXED COCOERCIVE EXTENDED GENERAL VARIATIONAL INEQUALITIES

  • Jun-Min, Chen;Hui, Tong
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.561-567
    • /
    • 2012
  • The approximate solvability of a generalized system for relaxed cocoercive extended general variational inequalities is studied by using the project operator technique. The results presented in this paper are more general and include many previously known results as special cases.

EXTREME PRESERVERS OF RANK INEQUALITIES OF BOOLEAN MATRIX SUMS

  • Song, Seok-Zun;Jun, Young-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.643-652
    • /
    • 2008
  • We construct the sets of Boolean matrix pairs, which are naturally occurred at the extreme cases for the Boolean rank inequalities relative to the sums and difference of two Boolean matrices or compared between their Boolean ranks and their real ranks. For these sets, we consider the linear operators that preserve them. We characterize those linear operators as T(X) = PXQ or $T(X)\;=\;PX^tQ$ with appropriate invertible Boolean matrices P and Q.

  • PDF

EXTREME SETS OF RANK INEQUALITIES OVER BOOLEAN MATRICES AND THEIR PRESERVERS

  • Song, Seok Zun;Kang, Mun-Hwan;Jun, Young Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • We consider the sets of matrix ordered pairs which satisfy extremal properties with respect to Boolean rank inequalities of matrices over nonbinary Boolean algebra. We characterize linear operators that preserve these sets of matrix ordered pairs as the form of $T(X)=PXP^T$ with some permutation matrix P.

ITERATIVE ALGORITHMS FOR GENERALIZED MONOTONE VARIATIONAL INEQUALITIES

  • H, M-U
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.89-98
    • /
    • 1999
  • We propose some new iterative methods for solving the generalized variational inequalities where the underlying operator T is monotone. These methods may be viewed as projection-type meth-ods. Convergence of these methods requires that the operator T is only monotone. The methods and the proof of the convergence are very simple. The results proved in this paper also represent a signif-icant improvement and refinement of the known results.

EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES

  • Andric, Maja;Farid, Ghulam;Pecaric, Josip;Siddique, Muhammad Usama
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1171-1184
    • /
    • 2020
  • This paper presents several fractional generalizations and extensions of known integral inequalities. To obtain these, an extended generalized Mittag-Leffler function and its fractional integral operator are used.

WEIGHTED LEBESGUE NORM INEQUALITIES FOR CERTAIN CLASSES OF OPERATORS

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.137-160
    • /
    • 2006
  • We describe the weight functions for which Hardy's inequality of nonincreasing functions is satisfied. Further we characterize the pairs of weight functions $(w,v)$ for which the Laplace transform $\mathcal{L}f(x)={\int}^{\infty}_0e^{-xy}f(y)dy$, with monotone function $f$, is bounded from the weighted Lebesgue space $L^p(w)$ to $L^q(v)$.

  • PDF

ALGORITHMS FOR SYSTEMS OF NONLINEAR VARIATIONAL INEQUALITIES

  • Cho, Y.J.;Fang, Y.P.;Huang, N.J.;Hwang, H.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.489-499
    • /
    • 2004
  • In this paper, we introduce and study a new system of nonlinear variational inequalities. The existence and uniqueness of solution for this problem are proved and an iterative algorithm for approximating the solution of system of nonlinear variational inequalities is constructed.