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and Muhammad Usama Siddique

Abstract. This paper presents several fractional generalizations and ex-
tensions of known integral inequalities. To obtain these, an extended

generalized Mittag-Leffler function and its fractional integral operator

are used.

1. Introduction

Inequalities which involve integrals of functions and their derivatives, whose
study has a history of about one century, are of great importance in mathe-
matics, with far-reaching applications in the theory of differential equations,
approximations and probability, among others. They occupy a central position
in mathematical analysis and its applications.

In recent years considerable interest in fractional calculus has been stim-
ulated by the applications that this calculus finds in numerical analysis and
different areas of physics and engineering. Fractional calculus made it pos-
sible to adopt a theoretical model on experimental data. There are several
well known forms of the fractional operators (meaning fractional integral and
fractional derivative) that have been studied extensively for their applications:
Riemann-Liouville, Weyl, Erdély-Kober, Hadamard, Katugampola are just a
few. Here we will need the left-sided Riemann-Liouville fractional integral of
order σ > 0 defined as in [4] for f ∈ L1[a, b] by

(1) Jσa+f(x) =
1

Γ(σ)

∫ x

a

(x− t)σ−1f(t) dt, x ∈ (a, b].
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Recall, by Lp[a, b], 1 ≤ p <∞, the space of all Lebesgue measurable functions
f for which |fp| is Lebesgue integrable on [a, b] is denoted, and by L∞[a, b]
the set of all functions measurable and essentially bounded on [a, b]. Clearly,
L∞[a, b] ⊂ Lp[a, b] for all p ≥ 1.

For this paper, we have been motivated with researches of integral inequal-
ities by W. Liu et al. [5] and by Z. Dahmani [3], such as:

Theorem 1.1 ([5, Theorem 4]). Let f, g be positive continuous functions on
[a, b] such that f is decreasing and g is increasing. Then the following inequality

(2)

∫ x

a

fβ(x) dx∫ x

a

fγ(x) dx

≥

∫ x

a

gα(x) fβ(x) dx∫ x

a

gα(x) fγ(x) dx

holds for every α > 0 and β ≥ γ > 0. If f is increasing, then (2) is reverse.

Theorem 1.2 ([3, Theorem 3.6]). Let (fi)i=1,2,...,n and g be positive continuous
functions on [a, b] such that (fi)i=1,2,...,n are decreasing and g is increasing.
Then the following inequality

(3)
Jσa+

[∏n
i 6=s f

γi
i f

β
s (x)

]
Jσa+

[
gα(x)

∏n
i=1 f

γi
i (x)

]
Jσa+

[
gα(x)

∏n
i 6=s f

γi
i f

β
s

]
Jσa+

[∏n
i=1 f

γi
i (x)

] ≥ 1

holds for every a < x ≤ b, σ > 0, α > 0, β ≥ γs > 0, where s is a fixed integer
in {1, 2, . . . , n}.

The aim of this paper is to present corresponding results using our extended
generalized Mittag-Leffler function Eδ,c,q,rρ,σ,τ (z; p) (Definition 1) with its frac-

tional integral operator εw,δ,c,q,ra+,ρ,σ,τf (Definition 2) recently presented in [1]. The

well known Mittag-Leffler function Eρ is defined by the power series

(4) Eρ(z) =

∞∑
n=0

zn

Γ(ρn+ 1)
(z ∈ C ,<(ρ) > 0)

and it is a natural extension of the exponential, hyperbolic and trigonomet-
ric functions. This function and its generalizations appear as a solution of
fractional order differential or integral equations (for instance, see [6, 7]). An
extended and generalized Mittag-Leffler function is defined as follows:

Definition 1 ([1]). Let ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) > 0
with p ≥ 0, r > 0 and 0 < q ≤ r + <(ρ). Then Eδ,c,q,rρ,σ,τ (z; p) is defined by

(5) Eδ,c,q,rρ,σ,τ (z; p) =

∞∑
n=0

Bp(δ + nq, c− δ)
B(δ, c− δ)

(c)nq
Γ(ρn+ σ)

zn

(τ)nr
.
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Here (c)nq denotes the generalized Pochhammer symbol (c)nq = Γ(c+nq)
Γ(c) and

Bp is an extension of the beta function

Bp(x, y) =

∫ 1

0

tx−1(1− t)y−1e−
p

t(1−t) dt, (<(x),<(y),<(p) > 0).

As shown in [1], the series is absolutely convergent for all values of z provided
that q < r + <(ρ). Moreover, if q = r + <(ρ), then Eδ,c,q,rρ,σ,τ (z; p) converges for

|z| < rr <(ρ)<(ρ)

qq .

Definition 2 ([1]). Let w, ρ, σ, τ, δ, c ∈ C, <(ρ),<(σ),<(τ) > 0, <(c) > <(δ) >
0 with p ≥ 0, r > 0 and 0 < q ≤ r+<(ρ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then

the generalized fractional integral operator εw,δ,c,q,ra+,ρ,σ,τf is defined by

(6)
(
εw,δ,c,q,ra+,ρ,σ,τf

)
(x; p) =

∫ x

a

(x− t)σ−1Eδ,c,q,rρ,σ,τ (w(x− t)ρ; p)f(t) dt.

If we apply different parameter choices in Definition 1 and Definition 2, then
the corresponding known generalizations of Mittag-Leffler function and its frac-
tional integral operator can be deduced, for instance those defined by Prab-
hakar ([8]), Rahman et al. ([9]), Salim-Faraj ([10]), Shukla-Prajapati ([11]),
Srivastava-Tomovski ([12]). For more details see [1] and references therein.

Here we also mention a different way of extending the Mittag-Leffler func-
tion, done in papers [2] and [7], where generalized Mittag-Leffler function is
defined by

Eγ,c;λ,ρα,β (z; p) =

∞∑
n=0

Bλ,ρp (γ + n, c− γ)

B(γ, c− γ)

(c)n
Γ(αn+ β)

zn

n!
,

using

Bλ,ρp (x, y) =

∫ 1

0

tx−1(1− t)y−1
1F1

[
λ; ρ,− p

t(1− t)

]
dt

and p ∈ R+
0 ,<(c) > <(γ) > 0;<(α) > 0; ρ ∈ C \ Z−0 . In these two papers,

certain useful properties and formulas are investigated (such as integral rep-
resentation, Mellin transform, recurrence relation, and derivative formulas).
Also, image formulas associated with the fractional calculus operators with
Appell function in the kernel and Caputo-type fractional differential opera-
tors involving Srivastava polynomials and extended Mittag-Leffler function are
established.

For the purpose of this paper, we will use a simplified notation

EEE(z; p) := Eδ,c,q,rρ,σ,τ (z; p)

and

(εεεf)(x; p) :=
(
εw,δ,c,q,ra+,ρ,σ,τf

)
(x; p).
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Remark 1.3. Setting p = w = 0 in (5) and (6) we obtain

(7) EEE(z; 0) =

∞∑
n=0

(δ)nq
Γ(ρn+ σ)

zn

(τ)nr

and

(8) (εεεf)(x; 0) =
1

Γ(σ)

∫ x

a

(x− t)σ−1f(t) dt.

One can see that (εεεf)(x; 0) is actually the left-sided Riemann-Liouville frac-
tional integral Jσa+ of order σ, as defined in (1). Also,

EEE(0; p) =
Bp(δ, c− δ)
B(δ, c− δ)

1

Γ(σ)
,(9)

EEE(0; 0) =
1

Γ(σ)
.(10)

We will use all these calculations in the proof of our results.

The right-sided versions of all inequalities in this paper can be established
using the right-sided fractional integral operator(

εw,δ,c,q,rb−,ρ,σ,τ f
)

(x; p) =

∫ b

x

(t− x)σ−1Eδ,c,q,rρ,σ,τ (w(t− x)ρ; p)f(t) dt

and proved analogously.

2. Generalizations of certain integral inequalities involving
Mittag-Leffler function

In this section we present certain integral inequalities using our extended
generalized Mittag-Leffler functionEEE with the corresponding fractional integral
operator εεε (in real domain). For proving our inequalities, we follow similar
methods as in the paper by W. Liu et al. ([5]), which we supplement with the
necessary steps to obtain generalized results.

Further extensions of these results are given in the following section.

Theorem 2.1. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γ > 0 and x ∈ [a, b]. Let f, g be positive
continuous functions, monotonic in the opposite sense with f ∈ Lβ [a, b] and
g ∈ Lα[a, b]. Then the following inequality holds

(11)
(εεεfβ)(x; p)

(εεεfγ)(x; p)
≥ (εεε(gαfβ))(x; p)

(εεε(gαfγ))(x; p)
.

If f and g are monotonic functions in the same sense, then the inequality (11)
is reverse.

Proof. Let f, g be monotonic functions in the opposite sense, both positive and
continuous. Then for u, v ∈ [a, x] we obtain

(12) [(g(u))α − (g(v))α]
[
(f(v))β−γ − (f(u))β−γ

]
≥ 0,
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that is

(g(u))α(f(v))β−γ + (g(v))α(f(u))β−γ

≥ (g(u))α(f(u))β−γ + (g(v))α(f(v))β−γ .

Multiplying both sides of the above inequality by

(x− v)σ−1EEE(ω(x− v)ρ; p)(f(v))γ

and integrating on [a, x] with respect to the variable v, we get

(g(u))α(εεεfβ)(x; p) + (f(u))β−γ(εεε(gαfγ))(x; p)

≥ (g(u))α(f(u))β−γ(εεεfγ)(x; p) + (εεε(gαfβ))(x; p).

Further multiplying by

(x− u)σ−1EEE(ω(x− u)ρ; p)(f(u))γ

and then integrating on [a, x] with respect to the variable u, we have

(εεε(gαfγ))(x; p)(εεεfβ)(x; p) ≥ (εεε(gαfβ))(x; p)(εεεfγ)(x; p)

from which follows (11).
If f and g are monotonic in the same sense, then the reverse inequality of

(11) can be proved analogously. �

For a special case of an increasing function on [a, b], g(x) = x − a, we have
the following corollary.

Corollary 2.2. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γ > 0 and x ∈ (a, b]. Let f ∈ Lβ [a, b] be a
positive continuous decreasing function. Then the following inequality holds

(13)
(εεεfβ)(x; p)

(εεεfγ)(x; p)
≥ (εεε((x− a)αfβ))(x; p)

(εεε((x− a)αfγ))(x; p)
.

If f is increasing, then the inequality (13) is reverse.

Remark 2.3. If we consider special case of Mittag-Leffler function and its cor-
responding generalized fractional integral operator for p = w = 0, given in
(7)-(10), and if we set σ = 1, then the inequality (11) implies Theorem 1.1.
By verifying the condition (12), it is easy to see that although Theorem 1.1
is stated only for the case of decreasing function f and increasing function g,
inequality (2) remains valid even if f is increasing and g is decreasing function
g, hence monotone in the opposite sense.

Similarly, for p = w = 0 and σ = 1, the inequality (13) implies [5, Theorem
3].

Theorem 2.4. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γ > 0 and x ∈ [a, b]. Let f, g be positive
continuous functions, f ∈ Lα+β [a, b], g ∈ Lα[a, b], such that for all u, v ∈ [a, x]

(14) [(g(u))α(f(v))α − (g(v))α(f(u))α]
[
(f(v))β−γ − (f(u))β−γ

]
≥ 0.
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Then the following inequality holds

(15)
(εεεfα+β)(x; p)

(εεεfα+γ)(x; p)
≥ (εεε(gαfβ))(x; p)

(εεε(gαfγ))(x; p)
.

If the condition (14) is reverse, then the inequality (15) is reverse.

Proof. According to condition (14) we arrive at

(g(u))α(f(v))α+β−γ + (g(v))α(f(u))α+β−γ

≥ (g(u))α(f(v))α(f(u))β−γ + (g(v))α(f(u))α(f(v))β−γ .

Multiplying the above by

(x− v)σ−1EEE(ω(x− v)ρ; p)(f(v))γ

and integrating on [a, x] with respect to the variable v, we get

(g(u))α(εεεfα+β)(x; p) + (f(u))α+β−γ(εεε(gαfγ))(x; p)

≥ (g(u))α(f(u))β−γ(εεεfα+γ)(x; p) + (f(u))α(εεε(gαfβ))(x; p).

Once more, multiplying the above by

(x− u)σ−1EEE(ω(x− u)ρ; p)(f(u))γ

and then integrating on [a, x] with respect to the variable u, we obtain

(εεε(gαfγ))(x; p)(εεεfα+β)(x; p) ≥ (εεε(gαfβ))(x; p)(εεεfα+γ)(x; p)

from which follows (15).
If the condition (14) is reverse, then the reverse inequality of (15) can be

proved analogously. �

Again, we have the following corollary for a special case g(x) = x− a.

Corollary 2.5. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γ > 0 and x ∈ (a, b]. Let f ∈ Lα+β [a, b] be a
positive continuous function such that for all u, v ∈ [a, x]

(16) [(u− a)α(f(v))α − (v − a)α(f(u))α]
[
(f(v))β−γ − (f(u))β−γ

]
≥ 0.

Then the following inequality holds

(17)
(εεεfα+β)(x; p)

(εεεfα+γ)(x; p)
≥ (εεε((x− a)αfβ))(x; p)

(εεε((x− a)αfγ))(x; p)
.

If the condition (16) is reverse, then the inequality (17) is reverse.

Remark 2.6. For p = w = 0 and σ = 1, inequalities (15) and (17) imply
[5, Theorem 6] and [5, Theorem 5], respectively.

Next we present an essential integral inequality that we need in order to
easily obtain Theorem 2.9.
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Theorem 2.7. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let x ∈ [a, b]. Let f, g, h ∈ L1[a, b] be positive continuous
functions such that f/h and g are monotonic in the opposite sense. Then the
following inequality holds

(18)
(εεεf)(x; p)

(εεεh)(x; p)
≥ (εεε(fg))(x; p)

(εεε(hg))(x; p)
.

If f/h and g are monotonic in the same sense, then the inequality (18) is
reverse.

Proof. From hypotheses on functions, for u, v ∈ [a, x] we have

[g(u)− g(v)]

[
f(v)

h(v)
− f(u)

h(u)

]
≥ 0,

that is

g(u)
f(v)

h(v)
+ g(v)

f(u)

h(u)
≥ g(u)

f(u)

h(u)
+ g(v)

f(v)

h(v)
.

Multiplying both sides of the above inequality by

(x− v)σ−1EEE(ω(x− v)ρ; p)h(v)

and integrating on [a, x] with respect to the variable v, we get

g(u)(εεεf)(x; p) +
f(u)

h(u)
(εεε(gh))(x; p)

≥ g(u)
f(u)

h(u)
(εεεh)(x; p) + (εεε(gf))(x; p).

Again, multiplying the above by

(x− u)σ−1EEE(ω(x− u)ρ; p)h(u)

and then integrating on [a, x] with respect to the variable u, we arrive at

(εεε(gh)(x; p)(εεεf)(x; p) ≥ (εεε(gf))(x; p)(εεεh)(x; p)

from which follows (18).
If f/h and g are monotonic functions in the same sense, then the reverse

inequality of (18) can be proved analogously. �

The counterpart of the previous result follows, where we assume f(x) ≤ h(x).
Hence, inequality (18) remains satisfied if g is replaced by fα−1.

Theorem 2.8. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α ≥ 1 and x ∈ [a, b]. Let f, h ∈ Lα[a, b] be positive
continuous functions such that f/h and f are monotonic in the opposite sense,
with f(x) ≤ h(x) on [a, b]. Then the following inequality holds

(19)
(εεεf)(x; p)

(εεεh)(x; p)
≥ (εεεfα)(x; p)

(εεεhα)(x; p)
.
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If f/h and f are monotonic functions in the same sense, then the inequality
(19) is reverse.

Proof. Assume that f/h is a decreasing function and f an increasing one. Then
for α ≥ 1 function fα−1 is also increasing. By applying Theorem 2.7 we obtain

(εεεf)(x; p)

(εεεh)(x; p)
≥ (εεε(fα))(x; p)

(εεε(hfα−1))(x; p)
.

This together with the assumption f(x) ≤ h(x) lead to (19). Analogously we
can prove the case when f/h is increasing and f decreasing, and obtain reversed
inequality if f/h and f are monotonic in the same sense. �

In the last theorem of this section we involve a convex function in the in-
equality.

Theorem 2.9. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let x ∈ [a, b]. Let f, g, h ∈ L1[a, b] be positive continuous
functions such that f/h is a decreasing function and f, g are increasing, with
f(x) ≤ h(x) on [a, b]. Let φ be a convex function on [0,∞] with φ(0) = 0. Then
the following inequality holds

(20)
(εεεf)(x; p)

(εεεh)(x; p)
≥ (εεε(φ(f)g))(x; p)

(εεε(φ(h)g))(x; p)
.

Proof. The function φ(x)
x is increasing since φ is a convex function on [0,∞]

with φ(0) = 0. From the assumption f(x) ≤ h(x) with the positivity of f and
h, we get

φ(f(x))

f(x)
≤ φ(h(x))

h(x)
.

Further, since f, g and φ(x)
x are increasing then the following function

φ(f(x))

f(x)
g(x)

is also increasing. Hence

(εεε(φ(f)g))(x; p)

(εεε(φ(h)g))(x; p)
=

(εεε(φ(f)
f fg))(x; p)

(εεε(φ(h)
h hg))(x; p)

≤
(εεε(φ(f)

f fg))(x; p)

(εεε(φ(f)
f hg))(x; p)

,

and by applying Theorem 2.7 for f , h, φ(f)
f g we obtain

≤ (εεε(f))(x; p)

(εεε(h))(x; p)
.

�
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Corollary 2.10. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r+ρ. Let x ∈ [a, b]. Let f, h ∈ L1[a, b] be positive continuous functions
such that f/h is a decreasing function and f is increasing, with f(x) ≤ h(x) on
[a, b]. Let φ be a convex function on [0,∞] with φ(0) = 0. Then the following
inequality holds

(21)
(εεεf)(x; p)

(εεεh)(x; p)
≥ (εεε(φ(f))(x; p)

(εεε(φ(h))(x; p)
.

Remark 2.11. If we set p = w = 0 and σ = 1, then Theorem 2.7, Theorem 2.8,
Theorem 2.9 and Corollary 2.10 generalize Theorem 7, Theorem 8, Theorem
10 and Theorem 9 from [5], respectively.

3. Extensions of certain integral inequalities involving
Mittag-Leffler function

We continue to further extend the previously presented integral inequali-
ties. Again we use our extended generalized Mittag-Leffler function EEE with
the corresponding fractional integral operator εεε (in real domain) applied on
(fi)i=1,2,...,n.

First theorem is an extension of Theorem 2.1.

Theorem 3.1. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γi > 0 for i = 1, 2, . . . , n and let x ∈ [a, b].
Let (fi)i=1,2,...,n and g be positive continuous functions, such that (fi)i=1,2,...,n

are decreasing and g is increasing with (fi)i=1,2,...,n ∈ Lβ [a, b] and g ∈ Lα[a, b].
Then for the fixed integer s ∈ {1, 2, . . . , n} the following inequality holds

(22)

(
εεε
(∏n

i 6=s f
γi
i f

β
s

))
(x; p)

(εεε (
∏n
i=1 f

γi
i )) (x; p)

≥

(
εεε
(
gα
∏n
i 6=s f

γi
i f

β
s

))
(x; p)

(εεε (gα
∏n
i=1 f

γi
i )) (x; p)

.

If (fi)i=1,2,...,n are increasing and g is decreasing, then the inequality (22) also
holds.

If all functions are monotonic in the same sense, then the inequality (22) is
reverse.

Proof. Let (fi)i=1,2,...,n be decreasing and g increasing, all positive and contin-
uous. Let s ∈ {1, 2, 3, ..., n}. Then for u, v ∈ [a, x] we obtain

[(g(u))α − (g(v))α]
[
(fs(v))β−γs − (fs(u))β−γs

]
≥ 0,

that is

(g(u))α(fs(v))β−γs + (g(v))α(fs(u))β−γs

≥ (g(u))α(fs(u))β−γs + (g(v))α(fs(v))β−γs .

Multiplying both sides of the above inequality by

(x− v)σ−1EEE(ω(x− v)ρ; p)

n∏
i=1

(fi(v))γi
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and integrating on [a, x] with respect to the variable v, we get

(g(u))α

εεε
 n∏
i 6=s

fγii f
β
s

 (x; p) + (fs(u))β−γs

(
εεε

(
gα

n∏
i=1

fγii

))
(x; p)

≥ (g(u))α(fs(u))β−γs

(
εεε

(
n∏
i=1

fγii

))
(x; p) +

εεε
gα n∏

i 6=s

fγii f
β
s

 (x; p).

Further multiplying by

(x− u)σ−1EEE(ω(x− u)ρ; p)

n∏
i=1

(fi(u))γi

and then integrating on [a, x] with respect to the variable u, we have(
εεε

(
gα

n∏
i=1

fγii

))
(x; p)

εεε
 n∏
i6=s

fγii f
β
s

 (x; p)

≥

εεε
gα n∏

i6=s

fγii f
β
s

 (x; p)

(
εεε

(
n∏
i=1

fγii

))
(x; p),

from which follows (22).
Analogously we can prove the case when (fi)i=1,2,...,n are increasing and g

is decreasing, and obtain reversed inequality if all functions are monotonic in
the same sense. �

Remark 3.2. As mentioned in Introduction, for p = w = 0 we obtain the left-
sided Riemann-Liouville fraction integral Jσa+ of order σ, i.e., (8), a special case
of Mittag-Leffler function and its corresponding generalized fractional integral
operator. Therefore, Theorem 3.1 generalizes Theorem 1.2.

On the other hand, if we set n = 1, then s = 1 which implies Theorem 2.1.

For g(x) = x − a, which is an increasing function on [a, b], we have the
following corollary. In this case, the inequality (23) implies [3, Theorem 3.1].

Corollary 3.3. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γi > 0 for i = 1, 2, . . . , n and let x ∈ (a, b]. Let
(fi)i=1,2,...,n be positive continuous decreasing functions with (fi)i=1,2,...,n ∈
Lβ [a, b]. Then for the fixed integer s ∈ {1, 2, . . . , n} the following inequality
holds

(23)

(
εεε
(∏n

i 6=s f
γi
i f

β
s

))
(x; p)

(εεε (
∏n
i=1 f

γi
i )) (x; p)

≥

(
εεε
(

(x− a)α
∏n
i 6=s f

γi
i f

β
s

))
(x; p)

(εεε ((x− a)α
∏n
i=1 f

γi
i )) (x; p)

.

If (fi)i=1,2,...,n are increasing, then the inequality (23) is reverse.
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Theorem 3.4. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γi > 0 for i = 1, 2, . . . , n and let x ∈ [a, b]. Let
(fi)i=1,2,...,n and g be positive continuous functions, (fi)i=1,2,...,n ∈ Lα+β [a, b]
and g ∈ Lα[a, b]. Let s ∈ {1, 2, . . . , n} be fixed integer and for all u, v ∈ [a, x]

(24) [(g(u))α(fs(v))α − (g(v))α(fs(u))α]
[
(fs(v))β−γs − (fs(u))β−γs

]
≥ 0.

Then the following inequality holds

(25)

(
εεε
(∏n

i 6=s f
γi
i f

α+β
s

))
(x; p)(

εεε
(∏n

i6=s f
γi
i f

α+γs
s

))
(x; p)

≥

(
εεε
(
gα
∏n
i 6=s f

γi
i f

β
s

))
(x; p)

(εεε (gα
∏n
i=1 f

γi
i )) (x; p)

.

If the condition (24) is reverse, then the inequality (25) is reverse.

Proof. From the (24) we obtain

(g(u))α(fs(v))α+β−γs + (g(v))α(fs(u))α+β−γs

≥ (g(u))α(fs(v))α(fs(u))β−γs + (g(v))α(fs(u))α(fs(v))β−γs .

Multiplying both sides of the above inequality by

(x− v)σ−1EEE(ω(x− v)ρ; p)

n∏
i=1

(fi(v))γi

and integrating on [a, x] with respect to the variable v, we get

(g(u))α

εεε
 n∏
i 6=s

fγii f
α+β
s

 (x; p) + (fs(u))α+β−γs

(
εεε

(
gα

n∏
i=1

fγii

))
(x; p)

≥ (g(u))α(fs(u))β−γs

εεε
 n∏
i 6=s

fγii f
α+γs
s

 (x; p)

+ (fs(u))
α

εεε
gα n∏

i 6=s

fγii f
β
s

 (x; p).

Further multiplying by

(x− u)σ−1EEE(ω(x− u)ρ; p)

n∏
i=1

(fi(u))γi

and then integrating on [a, x] with respect to the variable u, we have(
εεε

(
gα

n∏
i=1

fγii

))
(x; p)

εεε
 n∏
i 6=s

fγii f
α+β
s

 (x; p)

≥

εεε
gα n∏

i6=s

fγii f
β
s

 (x; p)

εεε
 n∏
i 6=s1

fγii f
α+γs
s

 (x; p),
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from which follows (25).
If the condition (24) is reverse, then the reverse inequality of (25) can be

proved analogously. �

Remark 3.5. For p = w = 0, Theorem 3.4 generalizes [3, Theorem 3.10].
Setting n = 1, Theorem 2.4 follows.

Corollary 3.6. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γi > 0 for i = 1, 2, . . . , n and let x ∈ (a, b]. Let
(fi)i=1,2,...,n ∈ Lα+β [a, b] be positive continuous functions. Let s ∈ {1, 2, . . . , n}
be fixed integer and for all u, v ∈ [a, x]

(26) [(u− a)α(fs(v))α − (u− v)α(fs(u))α]
[
(fs(v))β−γs − (fs(u))β−γs

]
≥ 0.

Then the following inequality holds

(27)

(
εεε
(∏n

i 6=s f
γi
i f

α+β
s

))
(x; p)(

εεε
(∏n

i 6=s f
γi
i f

α+γs
s

))
(x; p)

≥

(
εεε
(

(x− a)α
∏n
i 6=s f

γi
i f

β
s

))
(x; p)

(εεε ((x− a)α
∏n
i=1 f

γi
i )) (x; p)

.

If the condition (26) is reverse, then the inequality (27) is reverse.

Theorem 3.7. Let w ∈ R, ρ, σ, τ > 0, c > δ > 0 with p ≥ 0, r > 0 and
0 < q ≤ r + ρ. Let α > 0, β ≥ γi > 0 for i = 1, 2, . . . , n and let x ∈ [a, b]. Let
f, g, (hi)i=1,2,...,n ∈ L1[a, b] be positive continuous functions such that f/hs and
g are monotonic in the opposite sense, for s ∈ {1, 2, . . . , n}. Then the following
inequality holds

(28)

(
εεε
(
f
∏n
i 6=s hi

))
(x; p)

(εεε (
∏n
i=1 hi)) (x; p)

≥

(
εεε
(
gf
∏n
i6=s hi

))
(x; p)

(εεε (g
∏n
i=1 hi)) (x; p)

.

If f/hs and g are monotonic in the same sense for s ∈ {1, 2, . . . , n}, the in-
equality (28) is reverse.

Proof. From hypotheses on functions, for u, v ∈ [a, x] we have

[g(u)− g(v)]

[
f(v)

hs(v)
− f(u)

hs(u)

]
≥ 0,

that is

g(u)
f(v)

hs(v)
+ g(v)

f(u)

hs(u)
≥ g(u)

f(u)

hs(u)
+ g(v)

f(v)

hs(v)
.

Multiplying both sides of the above inequality by

(x− v)σ−1EEE(ω(x− v)ρ; p)

n∏
i=1

hi(v)

and integrating on [a, x] with respect to the variable v, we get

g(u)

εεε
f n∏

i 6=s

hi

 (x; p) +
f(u)

hs(u)

(
εεε

(
g

n∏
i=1

hi

))
(x; p)
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≥ g(u)
f(u)

hs(u)

(
εεε

(
n∏
i=1

hi

))
(x; p) +

εεε
gf n∏

i6=s

hi

 (x; p).

Again, multiplying the above by

(x− u)σ−1EEE(ω(x− u)ρ; p)

n∏
i=1

hi(u)

and then integrating on [a, x] with respect to the variable u, we arrive at(
εεε

(
g

n∏
i=1

hi

))
(x; p)

εεε
f n∏

i 6=s

hi

 (x; p)

≥

(
εεε

(
n∏
i=1

hi

))
(x; p)

εεε
gf n∏

i6=s

hi

 (x; p),

from which follows (28).
If f/hs and g are monotonic in the same sense for s ∈ {1, 2, . . . , n}, then the

reverse inequality of (28) can be proved analogously. �

Remark 3.8. For p = w = 0, Theorem 3.7 generalizes [3, Theorem 3.14].
Setting n = 1, Theorem 2.7 follows.

4. Concluding remarks

In this paper, we have presented certain integral inequalities using our ex-
tended generalized Mittag-Leffler function with the corresponding fractional
integral operator (in real domain), thereby generalizing and extending known
integral inequalities. Our work was motivated with researches of integral in-
equalities by W. Liu et al. [5] and by Z. Dahmani [3], in a way that Section 2
generalizes Liu’s results, and Section 3 those by Dahmani.
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