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GENERALIZED SYSTEM FOR RELAXED COCOERCIVE

EXTENDED GENERAL VARIATIONAL INEQUALITIES

Chen Jun-Min* and Tong Hui

Abstract. The approximate solvability of a generalized system for re-

laxed cocoercive extended general variational inequalities is studied by

using the project operator technique. The results presented in this paper
are more general and include many previously known results as special

cases.

1. Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted
by 〈·, ·〉 and ‖ · ‖ respectively. Let K be nonempty closed and convex set in H,
and T : H → H be given nonlinear operator.

In this paper, we consider, based on the projection method, the approxi-
mation solvability of a system of extended general variational inequalities with
different (γ, r)-cocoercive mappings. The results obtained in this paper extend
and improve the main ones in [2],[4],[5]. Let T1, T2, g, h be nonlinear mappings.
We consider the problem of finding (x∗, y∗) ∈ K ×K such that

〈ρT1(y∗, x∗)+h(x∗)−g(y∗), g(x)−h(x∗)〉 ≥ 0,∀x ∈ H : g(x) ∈ K, ρ > 0 (1.1)

〈ηT2(x∗, y∗)+g(y∗)−h(x∗), h(x)−g(y∗)〉 ≥ 0,∀x ∈ H : h(x) ∈ K, η > 0 (1.2)

which is called the system of extended general variational inequalities involving
four different nonlinear operators (SEGVID).

We now discuss some special cases.

I. If g = h, then problem (SEGVID) is equivalent to the following system of
variational inequalities: finding (x∗, y∗) ∈ K ×K such that

〈ρT1(y∗, x∗) +g(x∗)−g(y∗), g(x)−g(x∗)〉 ≥ 0,∀x ∈ H : g(x) ∈ K, ρ > 0 (1.3)

〈ηT2(x∗, y∗) +g(y∗)−g(x∗), g(x)−g(y∗)〉 ≥ 0,∀x ∈ H : g(x) ∈ K, η > 0 (1.4)
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which is the system of general variational inequalities (SGVID).

II. For g = h = I, the identity operator, the problem (SEGVID) is equivalent
to the following one: finding (x∗, y∗) ∈ K ×K such that

〈ρT1(y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0,∀x ∈ K, ρ > 0 (1.5)

〈ηT2(x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0,∀x ∈ K, η > 0 (1.6)

which is called the system of variational inequalities (SNVID) and has been
studied in [4].

III. If T1 = T2 = T , then the problem (SNVID) is equivalent to the following
system of variational inequalities (SNVI): finding (x∗, y∗) ∈ K ×K such that

〈ρT (y∗, x∗) + x∗ − y∗, x− x∗〉 ≥ 0,∀x ∈ K, ρ > 0 (1.7)

〈ηT (x∗, y∗) + y∗ − x∗, x− y∗〉 ≥ 0,∀x ∈ K, η > 0 (1.8)

which has been considered in [3],[4].

IV. If T1, T2 are univariate operators, then the problem (SEGVID) is equivalent
to the following system of variational inequalities: finding (x∗, y∗) ∈ K × K
such that

〈ρT1(y∗) + h(x∗)− g(y∗), g(x)− h(x∗)〉 ≥ 0,∀x ∈ K, ρ > 0 (1.9)

〈ηT2(x∗) + g(y∗)− h(x∗), h(x)− g(y∗)〉 ≥ 0,∀x ∈ K, η > 0 (1.10)

.

V. If T1 = T2 = T is the univariate nonlinear operator, then the problem
(1.9),(1.10) is equivalent to finding u ∈ H,h(u) ∈ K such that

〈Tu, g(v)− h(u)〉 ≥ 0, ∀v ∈ H, g(v) ∈ K. (∗)
An inequality of type (∗) is called extended general variational inequality in-
volving three operators, which was introduced and studied by Noor [1]. The
special cases of the extended general variational inequality have introduced in
Noor [1]. Using a projection technique, Noor [1] established the equivalence
between the extended general variational inequalities and the generalized non-
linear projection equation. Using this equivalent formulation, Noor discussed
the existence of a solution of the extended general variational inequalities under
suitable conditions. And Noor [1] emphasized that the problem (∗) is equivalent
to that of finding u ∈ H : h(u) ∈ K such that

〈Tu+ h(u)− g(u), g(v)− h(u)〉 ≥ 0, ∀v ∈ H, g(v) ∈ K. (1.11)

We now recall the following well-known results and concepts.

Lemma 1.1. For given z ∈ H,u ∈ K satisfies the inequality

〈u− z, v − u〉 ≥ 0,∀v ∈ K, (1.12)

if and only if
u = PK(z)
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where PK is the projection of H onto K. Also the projection operator PK is
nonexpansive.

Using Lemma 1.1, we can show that the extended general variational in-
equality (1.11) is equivalent to the fixed point problem. This result is mainly
due to Noor [1].

Lemma 1.2. The function u ∈ H : h(u) ∈ K is a solution of the extended
general variational inequality (1.8) if and only if u ∈ H : h(u) ∈ K satisfies
the relation

h(u) = PK [g(u)− ρTu], (1.13)

where PK is the projection operator and ρ > 0 is a constant.

It is clear from the Lemma 1.2 that the extended general variational inequal-
ity (1.11) and the fixed point problem (1.13) are equivalent. This alternative
equivalent formulation has played a significant role in the studies of the varia-
tional inequalities and related optimization problems.

It is convenient to rewrite the relation (1.13) in the following form, which is
very useful in obtaining our results:

u = (1− αn)u+ αn(u− h(u) + PK [g(u)− ρTu]), (1.14)

where αn ∈ [0, 1], for all n ≥ 0.
Using lemma 1.2 and (1.14), we can easily show that finding the solution

(x∗, y∗) ∈ K×K of problem (SEGVID) is equivalent to finding (x∗, y∗) ∈ K×K
such that :

x∗ = (1− αn)x∗ + αn(x∗ − h(x∗) + PK [g(y∗)− ρT1(y∗, x∗)]). (1.15)

y∗ = (1− βn)y∗ + βn(y∗ − g(y∗) + PK [h(x∗)− ηT2(x∗, y∗)]). (1.16)

We recall that the following definitions:

Definition 1. A mapping T : K → H is called µ-Lipschitzian if there exists a
constant µ > 0, such that

‖Tx− Ty‖ ≤ µ‖x− y‖,∀x, y ∈ K.

Definition 2. A mapping T : K → H is called r-strongly monotonic if there
exists a constant r > 0, such that

〈Tx− Ty, x− y〉 ≥ r‖x− y‖2,∀x, y ∈ K.

Definition 3. A mapping T : K → H is called α-cocoercive if there exists a
constant α > 0, such that

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2,∀x, y ∈ K.

Clearly, every α-cocoercive mapping T is ( 1
α )-Lipschitz continuous.
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Definition 4. A mapping T : K → H is called relaxed (γ, r)-cocoercive if
there exist constants γ > 0, r > 0, such that

〈Tx− Ty, x− y〉 ≥ −γ‖Tx− Ty‖2 + r‖x− y‖2,∀x, y ∈ K.

For γ = 0, T is r-strongly monotone. This class of mappings is more general
than the class of strongly monotone mapping.

In order to prove our results we need the following Lemma:

Lemma 1.3. ([4]) Suppose {an}∞n=0, {bn}∞n=0, {cn}∞n=0 are nonnegative sequences
satisfying the following inequality:

an+1 ≤ (1− λn)an + bn + cn, n ≥ n0
where n0 is some nonnegative integer, λn ∈ (0, 1),

∑∞
n=0 λn = ∞, and bn =

o(λn) and
∑∞
n=0 cn <∞, then limn→∞ an = 0.

2. Algorithms

In this section, we deal with an introduction of general two-step methods
and its special form , which can be applied to the convergence analysis for
projection operator technique in the context of the approximation solvability
of the (SEGVID) problems(1.1),(1.2) and (1.9), (1.10) etc.

Algorithm 2.1. For arbitrary chosen initial points x0, y0 ∈ H, compute the
sequence {xn} and {yn} by the iterative schemes

xn+1 = (1− αn)xn + αn{xn − h(xn) + PK [g(yn)− ρT1(yn, xn)]}

yn = (1− βn)xn + βn{yn − g(yn) + PK [h(xn)− ηT2(xn, yn)]},
where αn, βn ∈ [0, 1] for all n ≥ 0.

If T1 and T2 are univariate mappings, then the Algorithm 2.1 reduces to
the following method for solving the system of extended general variational
inequalities (1.9), (1.10).

Algorithm 2.2. For arbitrary chosen initial points x0, y0 ∈ H, compute the
sequence {xn} and {yn} by the iterative schemes

xn+1 = (1− αn)xn + αn{xn − h(xn) + PK [g(yn)− ρT1(yn)]}

yn = (1− βn)xn + βn{yn − g(yn) + PK [h(xn)− ηT2(xn)]},
where αn, βn ∈ [0, 1] for all n ≥ 0.

For β = 1 in Algorithm 2.1, we arrive at

Algorithm 2.3. For arbitrary chosen initial points x0, y0 ∈ H, compute the
sequence {xn} and {yn} by the iterative schemes

xn+1 = (1− αn)xn + αn{xn − h(xn) + PK [g(yn)− ρT1(yn, xn)]}

g(yn) = PK [h(xn)− ηT2(xn, yn)],

where αn, βn ∈ [0, 1] for all n ≥ 0.
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3. Main results

In this section, we investigate the strong convergence of Algorithm 2.1 under
some suitable mild conditions and this is the main motivation as well as main
result of this paper.

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space H.
Let T1 be relaxed (γ1, r1) cocoercive and µ1-Lipschitzian mapping in the first
variable, and T2 be relaxed (γ2, r2) cocoercive and µ2-Lipschitzian mapping in
the first variable. Let g be a relaxed (γ3, r3) cocoercive and µ3-Lipschitzian
mapping of H into H and h be a relaxed (γ4, r4) cocoercive and µ4-Lipschitzian
mapping of K into H. Let {xn}, {yn} be sequences defined by algorithm 2.1,
for any initial point x0, y0 ∈ K , with conditions

|ρ− r1 − γ1µ2
1

µ2
1

| <
√

((r1 − γ1µ2
1)2 − µ2

1k1(2− k1)

µ2
1

,

r1 > γ1µ
2
1 + µ1

√
k1(2− k1), k1 < 1,

(3.1)

|η − r2 − γ2µ2
2

µ2
2

| <
√

((r2 − γ2µ2
2)2 − µ2

2k2(2− k2)

µ2
2

,

r2 > γ2µ
2
2 + µ2

√
k2(2− k2), k2 < 1,

(3.2)

where

k1 =
√

1 + 2γ3µ2
3 − 2r3 + µ2

3,

k2 =
√

1 + 2γ4µ2
4 − 2r4 + µ2

4.

αn, βn ∈ [0, 1] satisfy the following conditions
(i)
∑∞
n=1 αn =∞, (ii)limn→∞(1− βn) = 0.

Then (xn, yn) obtained from Algorithm 2.1 converges strongly to (x∗, y∗).

Proof. Since x∗ and y∗ ∈ K are a solution to the problem (SEGVID), from
(1.15), we have

‖xn+1 − x∗‖
= ‖(1− αn)xn + αn{xn − h(xn) + PK [g(yn)− ρT1(yn, xn)]}
−(1− αn)x∗ − αn{x∗ − h(x∗) + PK [g(x∗)− ρT1(y∗, x∗)]}‖

≤ (1− αn)‖xn − x∗‖+ αn‖xn − h(xn)− x∗ + h(x∗)‖
+αn‖g(yn)− ρT1(yn, xn)− g(x∗) + ρT1(y∗, x∗)‖

≤ (1− αn)‖xn − x∗‖+ αn‖xn − h(xn)− x∗ + h(x∗)‖
+αn‖g(yn)− g(y∗)− yn + y∗‖
+αn‖yn − y∗ − ρT1(yn, xn) + ρT1(y∗, x∗)‖. (3.3)
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From the relaxed (γ1, r1)-cocoercive and µ1-Lipschitzian definition on T1,

‖yn − x∗ − ρ(T1(yn, xn)− T1(y∗, x∗))‖2

= ‖yn − x∗‖2 − 2ρ〈T1(yn, xn)− T1(y∗, x∗), yn − x∗〉
+ρ2‖T1(yn, xn)− T1(y∗, x∗)‖2

≤ ‖yn − x∗‖2 − 2ρ[−γ1‖T1(yn, xn)− T1(y∗, x∗)‖2 + r1‖yn − y∗‖2]

+ρ2‖T1(yn, xn)− T1(y∗, x∗)‖2

≤ [1 + 2ργ1µ
2
1 − 2ρr1 + ρ2µ2

1]‖yn − y∗‖2. (3.4)

In similar way, using the relaxed (γ3, r3)-cocoercivity and µ3- lipschitzian of
the operator g, and the relaxed (γ4, r4)-cocoercivity and µ4- lipschitzian of the
operator h, we have

‖yn−y∗−[g(yn)−g(y∗)]‖≤
√

1+2γ3µ2
3 − 2r3+µ2

3‖yn−x∗‖=k1‖yn−y∗‖. (3.5)

‖xn!−!x∗−[h(xn)−h(x∗)]‖≤
√

1+2γ4µ2
4−2r4+µ2

4‖xn−x∗‖=k2‖xn−x∗‖. (3.6)

From (3.3)-(3.5), we have

‖xn+1 − x∗‖ ≤ (1− αn(1− k2))‖xn − x∗‖+ αnθ1‖yn − y∗‖, (3.7)

where θ1 = k1 +
√

1 + 2ργ1µ2
1 − 2ρr1 + ρ2µ2

1. From (3.1) and (3.2), we have
θ1 < 1.

From (1.16), we have

‖yn − y∗‖
≤ (1− βn)‖xn − y∗‖+ βn‖{yn − g(yn) + PK [h(xn)− ηT2(xn, yn)]}
−{y∗ − g(y∗) + PK [h(x∗)− ηT2(x∗, y∗)]}‖

≤ (1− βn)‖xn − y∗‖+ βn‖yn − y∗ − g(yn) + g(y∗)‖
+βn‖h(xn)− ηT2(xn, yn)− h(x∗) + ηT2(x∗, y∗‖

≤ (1− βn)‖xn − y∗‖+ βn‖yn − y∗ − g(yn) + g(y∗)‖
+βn‖xn − x∗ − h(xn) + h(x∗)‖
+βn‖xn − x∗ − η(T2(xn, yn)− T2(x∗, y∗))‖, (3.8)

similarly, from the relaxed (γ2, r2)-cocoercive and µ2-Lipschitzian definition on
T2,

‖xn − x∗ − η(T2(xn, yn)− T2(x∗, y∗))‖2

= ‖xn − x∗‖2 − 2η〈T2(xn, yn)− T2(x∗, y∗), xn − x∗〉
+η2‖T2(xn, yn)− T2(x∗, y∗)‖2

≤ ‖xn − x∗‖2 − 2η[−γ2‖T2(xn, yn)− T2(x∗, y∗)‖2 + r2‖xn − x∗‖2]

+η2‖T2(xn, yn)− T2(x∗, y∗)‖2

≤ [1 + 2ηγ2µ
2
2 − 2ηr2 + η2µ2

2]‖xn − x∗‖2. (3.9)
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From (3.6),(3.8),(3.9) we have

‖yn − y∗‖
≤ (1− βn)‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖

+βnk1‖yn − y∗‖+ βn(k2 +
√

1 + 2ηγ2µ2
2 − 2ηr2 + η2µ2

2)‖xn − x∗‖,
= βnk1‖yn − y∗‖+ (1− βn(1− θ2))‖xn − x∗‖+ (1− βn)‖x∗ − y∗‖

where θ2 = k2 +
√

1 + 2ηγ2µ2
2 − 2ηr2 + η2µ2

2, θ2 < 1, i.e.,

‖yn − y∗‖ ≤
1− βn(1− θ2)

1− βnk1
‖xn − x∗‖+

1− βn
1− βnk1

‖x∗ − y∗‖. (3.10)

From(3.7)and (3.10), we obtain that

‖xn+1 − x∗‖
≤ (1− αn(1− k2))‖xn − x∗‖+ αnθ1‖yn − x∗‖

≤ (1− αn(1− k2))‖xn − x∗‖+ αnθ1
1− βn(1− θ2)

1− βnk1
‖xn − x∗‖

+αnθ1
1− βn

1− βnk1
‖x∗ − y∗‖

=

{
1− αn

[
1− k2 − θ1

1− βn(1− θ2)

1− βnk1

]}
‖xn − x∗‖+ αnθ1

1− βn
1− βnk1

‖x∗ − y∗‖,

noticing limn→∞(1 − βn) = 0, by Lemma 1.3, limn→∞ ‖xn − x∗‖ = 0, i.e.,
xn → x∗. Furthermore it follows that limn→∞ ‖yn− y∗‖ = 0, i.e., yn → y∗. �
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