GENERALIZED SYSTEM FOR RELAXED COCOERCIVE EXTENDED GENERAL VARIATIONAL INEQUALITIES

Chen Jun-Min* and Tong Hui

Abstract

The approximate solvability of a generalized system for relaxed cocoercive extended general variational inequalities is studied by using the project operator technique. The results presented in this paper are more general and include many previously known results as special cases.

1. Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ respectively. Let K be nonempty closed and convex set in H, and $T: H \rightarrow H$ be given nonlinear operator.

In this paper, we consider, based on the projection method, the approximation solvability of a system of extended general variational inequalities with different (γ, r)-cocoercive mappings. The results obtained in this paper extend and improve the main ones in [2],[4],[5]. Let T_{1}, T_{2}, g, h be nonlinear mappings. We consider the problem of finding $\left(x^{*}, y^{*}\right) \in K \times K$ such that

$$
\begin{align*}
& \left\langle\rho T_{1}\left(y^{*}, x^{*}\right)+h\left(x^{*}\right)-g\left(y^{*}\right), g(x)-h\left(x^{*}\right)\right\rangle \geq 0, \forall x \in H: g(x) \in K, \rho>0 \\
& \left\langle\eta T_{2}\left(x^{*}, y^{*}\right)+g\left(y^{*}\right)-h\left(x^{*}\right), h(x)-g\left(y^{*}\right)\right\rangle \geq 0, \forall x \in H: h(x) \in K, \eta>0 \tag{1.2}
\end{align*}
$$

which is called the system of extended general variational inequalities involving four different nonlinear operators (SEGVID).

We now discuss some special cases.
I. If $g=h$, then problem (SEGVID) is equivalent to the following system of variational inequalities: finding $\left(x^{*}, y^{*}\right) \in K \times K$ such that

$$
\begin{aligned}
& \left\langle\rho T_{1}\left(y^{*}, x^{*}\right)+g\left(x^{*}\right)-g\left(y^{*}\right), g(x)-g\left(x^{*}\right)\right\rangle \geq 0, \forall x \in H: g(x) \in K, \rho>0 \\
& \left\langle\eta T_{2}\left(x^{*}, y^{*}\right)+g\left(y^{*}\right)-g\left(x^{*}\right), g(x)-g\left(y^{*}\right)\right\rangle \geq 0, \forall x \in H: g(x) \in K, \eta>0
\end{aligned}
$$

[^0]which is the system of general variational inequalities (SGVID).
II. For $g=h=I$, the identity operator, the problem (SEGVID) is equivalent to the following one: finding $\left(x^{*}, y^{*}\right) \in K \times K$ such that
\[

$$
\begin{align*}
& \left\langle\rho T_{1}\left(y^{*}, x^{*}\right)+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0, \forall x \in K, \rho>0 \tag{1.5}\\
& \left\langle\eta T_{2}\left(x^{*}, y^{*}\right)+y^{*}-x^{*}, x-y^{*}\right\rangle \geq 0, \forall x \in K, \eta>0 \tag{1.6}
\end{align*}
$$
\]

which is called the system of variational inequalities (SNVID) and has been studied in [4].
III. If $T_{1}=T_{2}=T$, then the problem (SNVID) is equivalent to the following system of variational inequalities (SNVI): finding $\left(x^{*}, y^{*}\right) \in K \times K$ such that

$$
\begin{align*}
& \left\langle\rho T\left(y^{*}, x^{*}\right)+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0, \forall x \in K, \rho>0 \tag{1.7}\\
& \left\langle\eta T\left(x^{*}, y^{*}\right)+y^{*}-x^{*}, x-y^{*}\right\rangle \geq 0, \forall x \in K, \eta>0 \tag{1.8}
\end{align*}
$$

which has been considered in [3],[4].
IV. If T_{1}, T_{2} are univariate operators, then the problem (SEGVID) is equivalent to the following system of variational inequalities: finding $\left(x^{*}, y^{*}\right) \in K \times K$ such that

$$
\begin{gather*}
\left\langle\rho T_{1}\left(y^{*}\right)+h\left(x^{*}\right)-g\left(y^{*}\right), g(x)-h\left(x^{*}\right)\right\rangle \geq 0, \forall x \in K, \rho>0 \tag{1.9}\\
\left\langle\eta T_{2}\left(x^{*}\right)+g\left(y^{*}\right)-h\left(x^{*}\right), h(x)-g\left(y^{*}\right)\right\rangle \geq 0, \forall x \in K, \eta>0 \tag{1.10}
\end{gather*}
$$

V. If $T_{1}=T_{2}=T$ is the univariate nonlinear operator, then the problem (1.9),(1.10) is equivalent to finding $u \in H, h(u) \in K$ such that

$$
\begin{equation*}
\langle T u, g(v)-h(u)\rangle \geq 0, \quad \forall v \in H, g(v) \in K \tag{*}
\end{equation*}
$$

An inequality of type $(*)$ is called extended general variational inequality involving three operators, which was introduced and studied by Noor [1]. The special cases of the extended general variational inequality have introduced in Noor [1]. Using a projection technique, Noor [1] established the equivalence between the extended general variational inequalities and the generalized nonlinear projection equation. Using this equivalent formulation, Noor discussed the existence of a solution of the extended general variational inequalities under suitable conditions. And Noor [1] emphasized that the problem $(*)$ is equivalent to that of finding $u \in H: h(u) \in K$ such that

$$
\begin{equation*}
\langle T u+h(u)-g(u), g(v)-h(u)\rangle \geq 0, \quad \forall v \in H, g(v) \in K \tag{1.11}
\end{equation*}
$$

We now recall the following well-known results and concepts.
Lemma 1.1. For given $z \in H, u \in K$ satisfies the inequality

$$
\begin{equation*}
\langle u-z, v-u\rangle \geq 0, \forall v \in K \tag{1.12}
\end{equation*}
$$

if and only if

$$
u=P_{K}(z)
$$

where P_{K} is the projection of H onto K. Also the projection operator P_{K} is nonexpansive.

Using Lemma 1.1, we can show that the extended general variational inequality (1.11) is equivalent to the fixed point problem. This result is mainly due to Noor [1].

Lemma 1.2. The function $u \in H: h(u) \in K$ is a solution of the extended general variational inequality (1.8) if and only if $u \in H: h(u) \in K$ satisfies the relation

$$
\begin{equation*}
h(u)=P_{K}[g(u)-\rho T u], \tag{1.13}
\end{equation*}
$$

where P_{K} is the projection operator and $\rho>0$ is a constant.
It is clear from the Lemma 1.2 that the extended general variational inequality (1.11) and the fixed point problem (1.13) are equivalent. This alternative equivalent formulation has played a significant role in the studies of the variational inequalities and related optimization problems.

It is convenient to rewrite the relation (1.13) in the following form, which is very useful in obtaining our results:

$$
\begin{equation*}
u=\left(1-\alpha_{n}\right) u+\alpha_{n}\left(u-h(u)+P_{K}[g(u)-\rho T u]\right), \tag{1.14}
\end{equation*}
$$

where $\alpha_{n} \in[0,1]$, for all $n \geq 0$.
Using lemma 1.2 and (1.14), we can easily show that finding the solution $\left(x^{*}, y^{*}\right) \in K \times K$ of problem (SEGVID) is equivalent to finding $\left(x^{*}, y^{*}\right) \in K \times K$ such that :

$$
\begin{align*}
x^{*} & =\left(1-\alpha_{n}\right) x^{*}+\alpha_{n}\left(x^{*}-h\left(x^{*}\right)+P_{K}\left[g\left(y^{*}\right)-\rho T_{1}\left(y^{*}, x^{*}\right)\right]\right) . \tag{1.15}\\
y^{*} & =\left(1-\beta_{n}\right) y^{*}+\beta_{n}\left(y^{*}-g\left(y^{*}\right)+P_{K}\left[h\left(x^{*}\right)-\eta T_{2}\left(x^{*}, y^{*}\right)\right]\right) . \tag{1.16}
\end{align*}
$$

We recall that the following definitions:
Definition 1. A mapping $T: K \rightarrow H$ is called μ-Lipschitzian if there exists a constant $\mu>0$, such that

$$
\|T x-T y\| \leq \mu\|x-y\|, \forall x, y \in K
$$

Definition 2. A mapping $T: K \rightarrow H$ is called r-strongly monotonic if there exists a constant $r>0$, such that

$$
\langle T x-T y, x-y\rangle \geq r\|x-y\|^{2}, \forall x, y \in K
$$

Definition 3. A mapping $T: K \rightarrow H$ is called α-cocoercive if there exists a constant $\alpha>0$, such that

$$
\langle T x-T y, x-y\rangle \geq \alpha\|T x-T y\|^{2}, \forall x, y \in K
$$

Clearly, every α-cocoercive mapping T is $\left(\frac{1}{\alpha}\right)$-Lipschitz continuous.

Definition 4. A mapping $T: K \rightarrow H$ is called relaxed (γ, r)-cocoercive if there exist constants $\gamma>0, r>0$, such that

$$
\langle T x-T y, x-y\rangle \geq-\gamma\|T x-T y\|^{2}+r\|x-y\|^{2}, \forall x, y \in K
$$

For $\gamma=0, T$ is r-strongly monotone. This class of mappings is more general than the class of strongly monotone mapping.

In order to prove our results we need the following Lemma:
Lemma 1.3. ([4]) Suppose $\left\{a_{n}\right\}_{n=0}^{\infty},\left\{b_{n}\right\}_{n=0}^{\infty},\left\{c_{n}\right\}_{n=0}^{\infty}$ are nonnegative sequences satisfying the following inequality:

$$
a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+b_{n}+c_{n}, n \geq n_{0}
$$

where n_{0} is some nonnegative integer, $\lambda_{n} \in(0,1), \sum_{n=0}^{\infty} \lambda_{n}=\infty$, and $b_{n}=$ $o\left(\lambda_{n}\right)$ and $\sum_{n=0}^{\infty} c_{n}<\infty$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

2. Algorithms

In this section, we deal with an introduction of general two-step methods and its special form, which can be applied to the convergence analysis for projection operator technique in the context of the approximation solvability of the (SEGVID) problems(1.1),(1.2) and (1.9), (1.10) etc.
Algorithm 2.1. For arbitrary chosen initial points $x_{0}, y_{0} \in H$, compute the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ by the iterative schemes

$$
\begin{gathered}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left\{x_{n}-h\left(x_{n}\right)+P_{K}\left[g\left(y_{n}\right)-\rho T_{1}\left(y_{n}, x_{n}\right)\right]\right\} \\
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left\{y_{n}-g\left(y_{n}\right)+P_{K}\left[h\left(x_{n}\right)-\eta T_{2}\left(x_{n}, y_{n}\right)\right]\right\}
\end{gathered}
$$

where $\alpha_{n}, \beta_{n} \in[0,1]$ for all $n \geq 0$.
If T_{1} and T_{2} are univariate mappings, then the Algorithm 2.1 reduces to the following method for solving the system of extended general variational inequalities (1.9), (1.10).
Algorithm 2.2. For arbitrary chosen initial points $x_{0}, y_{0} \in H$, compute the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ by the iterative schemes

$$
\begin{gathered}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left\{x_{n}-h\left(x_{n}\right)+P_{K}\left[g\left(y_{n}\right)-\rho T_{1}\left(y_{n}\right)\right]\right\} \\
y_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n}\left\{y_{n}-g\left(y_{n}\right)+P_{K}\left[h\left(x_{n}\right)-\eta T_{2}\left(x_{n}\right)\right]\right\},
\end{gathered}
$$

where $\alpha_{n}, \beta_{n} \in[0,1]$ for all $n \geq 0$.
For $\beta=1$ in Algorithm 2.1, we arrive at
Algorithm 2.3. For arbitrary chosen initial points $x_{0}, y_{0} \in H$, compute the sequence $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ by the iterative schemes

$$
\begin{gathered}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left\{x_{n}-h\left(x_{n}\right)+P_{K}\left[g\left(y_{n}\right)-\rho T_{1}\left(y_{n}, x_{n}\right)\right]\right\} \\
g\left(y_{n}\right)=P_{K}\left[h\left(x_{n}\right)-\eta T_{2}\left(x_{n}, y_{n}\right)\right]
\end{gathered}
$$

where $\alpha_{n}, \beta_{n} \in[0,1]$ for all $n \geq 0$.

3. Main results

In this section, we investigate the strong convergence of Algorithm 2.1 under some suitable mild conditions and this is the main motivation as well as main result of this paper.

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space H. Let T_{1} be relaxed $\left(\gamma_{1}, r_{1}\right)$ cocoercive and μ_{1}-Lipschitzian mapping in the first variable, and T_{2} be relaxed $\left(\gamma_{2}, r_{2}\right)$ cocoercive and μ_{2}-Lipschitzian mapping in the first variable. Let g be a relaxed $\left(\gamma_{3}, r_{3}\right)$ cocoercive and μ_{3}-Lipschitzian mapping of H into H and h be a relaxed $\left(\gamma_{4}, r_{4}\right)$ cocoercive and μ_{4}-Lipschitzian mapping of K into H. Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences defined by algorithm 2.1, for any initial point $x_{0}, y_{0} \in K$, with conditions

$$
\begin{align*}
& \left|\rho-\frac{r_{1}-\gamma_{1} \mu_{1}^{2}}{\mu_{1}^{2}}\right|<\frac{\sqrt{\left(\left(r_{1}-\gamma_{1} \mu_{1}^{2}\right)^{2}-\mu_{1}^{2} k_{1}\left(2-k_{1}\right)\right.}}{\mu_{1}^{2}}, \tag{3.1}\\
& r_{1}>\gamma_{1} \mu_{1}^{2}+\mu_{1} \sqrt{k_{1}\left(2-k_{1}\right)}, \quad k_{1}<1, \\
& \left|\eta-\frac{r_{2}-\gamma_{2} \mu_{2}^{2}}{\mu_{2}^{2}}\right|<\frac{\sqrt{\left(\left(r_{2}-\gamma_{2} \mu_{2}^{2}\right)^{2}-\mu_{2}^{2} k_{2}\left(2-k_{2}\right)\right.}}{\mu_{2}^{2}}, \tag{3.2}\\
& r_{2}>\gamma_{2} \mu_{2}^{2}+\mu_{2} \sqrt{k_{2}\left(2-k_{2}\right)}, \quad k_{2}<1,
\end{align*}
$$

where

$$
\begin{aligned}
& k_{1}=\sqrt{1+2 \gamma_{3} \mu_{3}^{2}-2 r_{3}+\mu_{3}^{2}} \\
& k_{2}=\sqrt{1+2 \gamma_{4} \mu_{4}^{2}-2 r_{4}+\mu_{4}^{2}}
\end{aligned}
$$

$\alpha_{n}, \beta_{n} \in[0,1]$ satisfy the following conditions
(i) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$, (ii) $\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)=0$.

Then $\left(x_{n}, y_{n}\right)$ obtained from Algorithm 2.1 converges strongly to $\left(x^{*}, y^{*}\right)$.
Proof. Since x^{*} and $y^{*} \in K$ are a solution to the problem (SEGVID), from (1.15), we have

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\| \\
= & \|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n}\left\{x_{n}-h\left(x_{n}\right)+P_{K}\left[g\left(y_{n}\right)-\rho T_{1}\left(y_{n}, x_{n}\right)\right]\right\} \\
& -\left(1-\alpha_{n}\right) x^{*}-\alpha_{n}\left\{x^{*}-h\left(x^{*}\right)+P_{K}\left[g\left(x^{*}\right)-\rho T_{1}\left(y^{*}, x^{*}\right)\right]\right\} \| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|x_{n}-h\left(x_{n}\right)-x^{*}+h\left(x^{*}\right)\right\| \\
& +\alpha_{n}\left\|g\left(y_{n}\right)-\rho T_{1}\left(y_{n}, x_{n}\right)-g\left(x^{*}\right)+\rho T_{1}\left(y^{*}, x^{*}\right)\right\| \\
\leq & \left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|x_{n}-h\left(x_{n}\right)-x^{*}+h\left(x^{*}\right)\right\| \\
& +\alpha_{n}\left\|g\left(y_{n}\right)-g\left(y^{*}\right)-y_{n}+y^{*}\right\| \\
& +\alpha_{n}\left\|y_{n}-y^{*}-\rho T_{1}\left(y_{n}, x_{n}\right)+\rho T_{1}\left(y^{*}, x^{*}\right)\right\| . \tag{3.3}
\end{align*}
$$

From the relaxed $\left(\gamma_{1}, r_{1}\right)$-cocoercive and μ_{1}-Lipschitzian definition on T_{1},

$$
\begin{align*}
& \left\|y_{n}-x^{*}-\rho\left(T_{1}\left(y_{n}, x_{n}\right)-T_{1}\left(y^{*}, x^{*}\right)\right)\right\|^{2} \\
= & \left\|y_{n}-x^{*}\right\|^{2}-2 \rho\left(T_{1}\left(y_{n}, x_{n}\right)-T_{1}\left(y^{*}, x^{*}\right), y_{n}-x^{*}\right\rangle \\
& +\rho^{2}\left\|T_{1}\left(y_{n}, x_{n}\right)-T_{1}\left(y^{*}, x^{*}\right)\right\|^{2} \\
\leq & \left\|y_{n}-x^{*}\right\|^{2}-2 \rho\left[-\gamma_{1}\left\|T_{1}\left(y_{n}, x_{n}\right)-T_{1}\left(y^{*}, x^{*}\right)\right\|^{2}+r_{1}\left\|y_{n}-y^{*}\right\|^{2}\right] \\
& +\rho^{2}\left\|T_{1}\left(y_{n}, x_{n}\right)-T_{1}\left(y^{*}, x^{*}\right)\right\|^{2} \\
\leq & {\left[1+2 \rho \gamma_{1} \mu_{1}^{2}-2 \rho r_{1}+\rho^{2} \mu_{1}^{2}\right]\left\|y_{n}-y^{*}\right\|^{2} . } \tag{3.4}
\end{align*}
$$

In similar way, using the relaxed $\left(\gamma_{3}, r_{3}\right)$-cocoercivity and μ_{3} - lipschitzian of the operator g, and the relaxed $\left(\gamma_{4}, r_{4}\right)$-cocoercivity and μ_{4} - lipschitzian of the operator h, we have

$$
\begin{align*}
& \left\|y_{n}-y^{*}-\left[g\left(y_{n}\right)-g\left(y^{*}\right)\right]\right\| \leq \sqrt{1+2 \gamma_{3} \mu_{3}^{2}-2 r_{3}+\mu_{3}^{2}}\left\|y_{n}-x^{*}\right\|=k_{1}\left\|y_{n}-y^{*}\right\| . \tag{3.5}\\
& \left\|x_{n}!-!x^{*}-\left[h\left(x_{n}\right)-h\left(x^{*}\right)\right]\right\| \leq \sqrt{1+2 \gamma_{4} \mu_{4}^{2}-2 r_{4}+\mu_{4}^{2}}\left\|x_{n}-x^{*}\right\|=k_{2}\left\|x_{n}-x^{*}\right\| . \tag{3.6}
\end{align*}
$$

From (3.3)-(3.5), we have

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\| \leq\left(1-\alpha_{n}\left(1-k_{2}\right)\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \theta_{1}\left\|y_{n}-y^{*}\right\| \tag{3.7}
\end{equation*}
$$

where $\theta_{1}=k_{1}+\sqrt{1+2 \rho \gamma_{1} \mu_{1}^{2}-2 \rho r_{1}+\rho^{2} \mu_{1}^{2}}$. From (3.1) and (3.2), we have $\theta_{1}<1$.

From (1.16), we have

$$
\begin{align*}
& \left\|y_{n}-y^{*}\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-y^{*}\right\|+\beta_{n} \|\left\{y_{n}-g\left(y_{n}\right)+P_{K}\left[h\left(x_{n}\right)-\eta T_{2}\left(x_{n}, y_{n}\right)\right]\right\} \\
& -\left\{y^{*}-g\left(y^{*}\right)+P_{K}\left[h\left(x^{*}\right)-\eta T_{2}\left(x^{*}, y^{*}\right)\right]\right\} \| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-y^{*}\right\|+\beta_{n}\left\|y_{n}-y^{*}-g\left(y_{n}\right)+g\left(y^{*}\right)\right\| \\
& +\beta_{n} \| h\left(x_{n}\right)-\eta T_{2}\left(x_{n}, y_{n}\right)-h\left(x^{*}\right)+\eta T_{2}\left(x^{*}, y^{*} \|\right. \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-y^{*}\right\|+\beta_{n}\left\|y_{n}-y^{*}-g\left(y_{n}\right)+g\left(y^{*}\right)\right\| \\
& +\beta_{n}\left\|x_{n}-x^{*}-h\left(x_{n}\right)+h\left(x^{*}\right)\right\| \\
& +\beta_{n}\left\|x_{n}-x^{*}-\eta\left(T_{2}\left(x_{n}, y_{n}\right)-T_{2}\left(x^{*}, y^{*}\right)\right)\right\|, \tag{3.8}
\end{align*}
$$

similarly, from the relaxed $\left(\gamma_{2}, r_{2}\right)$-cocoercive and μ_{2}-Lipschitzian definition on T_{2},

$$
\begin{align*}
& \left\|x_{n}-x^{*}-\eta\left(T_{2}\left(x_{n}, y_{n}\right)-T_{2}\left(x^{*}, y^{*}\right)\right)\right\|^{2} \\
= & \left\|x_{n}-x^{*}\right\|^{2}-2 \eta\left\langle T_{2}\left(x_{n}, y_{n}\right)-T_{2}\left(x^{*}, y^{*}\right), x_{n}-x^{*}\right\rangle \\
& +\eta^{2}\left\|T_{2}\left(x_{n}, y_{n}\right)-T_{2}\left(x^{*}, y^{*}\right)\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 \eta\left[-\gamma_{2}\left\|T_{2}\left(x_{n}, y_{n}\right)-T_{2}\left(x^{*}, y^{*}\right)\right\|^{2}+r_{2}\left\|x_{n}-x^{*}\right\|^{2}\right] \\
& +\eta^{2}\left\|T_{2}\left(x_{n}, y_{n}\right)-T_{2}\left(x^{*}, y^{*}\right)\right\|^{2} \\
\leq & {\left[1+2 \eta \gamma_{2} \mu_{2}^{2}-2 \eta r_{2}+\eta^{2} \mu_{2}^{2}\right]\left\|x_{n}-x^{*}\right\|^{2} . } \tag{3.9}
\end{align*}
$$

From (3.6), (3.8),(3.9) we have

$$
\begin{aligned}
& \left\|y_{n}-y^{*}\right\| \\
\leq & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}\right)\left\|x^{*}-y^{*}\right\| \\
& +\beta_{n} k_{1}\left\|y_{n}-y^{*}\right\|+\beta_{n}\left(k_{2}+\sqrt{1+2 \eta \gamma_{2} \mu_{2}^{2}-2 \eta r_{2}+\eta^{2} \mu_{2}^{2}}\right)\left\|x_{n}-x^{*}\right\| \\
= & \beta_{n} k_{1}\left\|y_{n}-y^{*}\right\|+\left(1-\beta_{n}\left(1-\theta_{2}\right)\right)\left\|x_{n}-x^{*}\right\|+\left(1-\beta_{n}\right)\left\|x^{*}-y^{*}\right\|
\end{aligned}
$$

where $\theta_{2}=k_{2}+\sqrt{1+2 \eta \gamma_{2} \mu_{2}^{2}-2 \eta r_{2}+\eta^{2} \mu_{2}^{2}}, \theta_{2}<1$, i.e.,

$$
\begin{equation*}
\left\|y_{n}-y^{*}\right\| \leq \frac{1-\beta_{n}\left(1-\theta_{2}\right)}{1-\beta_{n} k_{1}}\left\|x_{n}-x^{*}\right\|+\frac{1-\beta_{n}}{1-\beta_{n} k_{1}}\left\|x^{*}-y^{*}\right\| \tag{3.10}
\end{equation*}
$$

From(3.7) and (3.10), we obtain that

$$
\begin{aligned}
& \left\|x_{n+1}-x^{*}\right\| \\
\leq & \left(1-\alpha_{n}\left(1-k_{2}\right)\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \theta_{1}\left\|y_{n}-x^{*}\right\| \\
\leq & \left(1-\alpha_{n}\left(1-k_{2}\right)\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \theta_{1} \frac{1-\beta_{n}\left(1-\theta_{2}\right)}{1-\beta_{n} k_{1}}\left\|x_{n}-x^{*}\right\| \\
& +\alpha_{n} \theta_{1} \frac{1-\beta_{n}}{1-\beta_{n} k_{1}}\left\|x^{*}-y^{*}\right\| \\
= & \left\{1-\alpha_{n}\left[1-k_{2}-\theta_{1} \frac{1-\beta_{n}\left(1-\theta_{2}\right)}{1-\beta_{n} k_{1}}\right]\right\}\left\|x_{n}-x^{*}\right\|+\alpha_{n} \theta_{1} \frac{1-\beta_{n}}{1-\beta_{n} k_{1}}\left\|x^{*}-y^{*}\right\|,
\end{aligned}
$$

noticing $\lim _{n \rightarrow \infty}\left(1-\beta_{n}\right)=0$, by Lemma $1.3, \lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=0$, i.e., $x_{n} \rightarrow x^{*}$. Furthermore it follows that $\lim _{n \rightarrow \infty}\left\|y_{n}-y^{*}\right\|=0$, i.e., $y_{n} \rightarrow y^{*}$.

References

[1] Muhammad. Aslam Noor, Extended general variational inequalities, Appl. Math. Lett. 22 (2009), 182-186.
[2] Muhammad. Aslam Noor and Khalida Inayat Noor, Projection algorithms for solving a system of general variational inequalities, Nonlinear Analysis 70 (2009), 2700-2706.
[3] R. U. Verma, Generalized system for relaxed ccoercive variational inequalities and projection methods, J. Optim. Theory Appl. 121 (2004), 203-210.
[4] S. S. Chang, H. W. Joseph Lee and C. K. Chan, General system for relaxed cocoercive variational inequalities in Hilbert spaces, Applied Mathematics Letters 20 (2007), 329334.
[5] Zhenyu Huang and M. Asalm Noor, An explicit projection method for s system of nonlinear variational inequalities with different (γ, r)-cocoercive mappings, Applied Mathematics and Computation 190 (2007), 356-361.

Chen Jun-Min
College of Mathematics and Computer, Hebei University, Baoding, P. R. China 071002

E-mail address: chenjunm01@163.com
Tong Hui
College of Mathematics and Computer, Hebei University, Baoding, P. R. China 071002

E-mail address: tonghui@cmc.hbu.cn

[^0]: Received March 19, 2012; Accepted August 5, 2012.
 2000 Mathematics Subject Classification. 49J40, 90C33.
 Key words and phrases. Extended general variational inequality, relaxed cocoercive mapping, fixed point problem, projection operator.

 This research is supported by the NSF of Hebei province (A2011201053, A2012201054), the NNSF of China (111101115)

 * corresponding author.

