• Title/Summary/Keyword: operator equation

Search Result 375, Processing Time 0.032 seconds

Operator-splitting methods respecting eigenvalue problems for shallow shelf equations with basal drag

  • Geiser, Jurgen;Calov, Reinhard
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.325-343
    • /
    • 2012
  • We present different numerical methods for solving the shallow shelf equations with basal drag (SSAB). An alternative approach of splitting the SSAB equation into a Laplacian and diagonal shift operator is discussed with respect to the underlying eigenvalue problem. First, we solve the equations using standard methods. Then, the coupled equations are decomposed into operators for membranes stresses, basal shear stress and driving stress. Applying reasonable parameter values, we demonstrate that the operator of the membrane stresses is much stiffer than the operator of the basal shear stress. Here, we could apply a new splitting method, which alternates between the iteration on the membrane-stress operator and the basal-shear operator, with a more frequent iteration on the operator of the membrane stresses. We show that this splitting accelerates and stabilize the computational performance of the numerical method, although an appropriate choice of the standard method used to solve for all operators in one step speeds up the scheme as well.

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

Derivation of Reverse-Time Migration Operator as Adjoint Operation (어드조인트 연산으로서의 역시간 구조보정 연산자 유도)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.111-123
    • /
    • 2007
  • Unlike the conventional reverse time migration method which is implemented by simply extrapolating wavefield in reverse time, this paper presents a derivation of another reverse time migration operator as the exact adjoint of the presumed forward wavefield extrapolation operator. The adjoint operator is obtained by formulating the forward time extrapolation operator in an explicit matrix equation form and then taking the adjoint to this matrix equation followed by determining the corresponding operator. The reverse time migration operator as the exact adjoint to the implied forward operator can be used not only as a migration algorithm but also as an adjoint operator which is required in the imaging through an inversion such as least-squares migration.

Method of converting schrodinger equation for heterostructures with a positon-dependent effective mass to the equation with a position-independent effective mass and its appliations (이종 구조에서 위치의 함수로 표시된 효과질량을 포함하는 Schrodinger 방정식을 위치에 무관한 효과질량을 포함하는 방정식으로 변환하는 방법 및 그 응용)

  • Lee, Byoung-Ho;Lee, Wook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.223-229
    • /
    • 1996
  • a simpel coordinate transformaton method is suggested that converts Schr$\"{o}$dinger's equation involving a position-dependent effective mass in a heterostructure to an equation involving a positon-independent effective mass. This method enables the conceptual study of the effect of the positon-dependent effective mass inserted between the divergence operator and the gradient operator in Schr$\"{o}$dinger's equation. It is also shown that the characteristics such as a transmission coefficient in various heterostructures involving a position-dependent effective masses can be obtained iwth ease by the suggested method.

  • PDF

Sequential operator-valued function space integral as an $L({L_p},{L_p'})$ theory

  • Ryu, K.S.
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.375-391
    • /
    • 1994
  • In 1968k Cameron and Storvick introduced the analytic and the sequential operator-valued function space integral [2]. Since then, the theo교 of the analytic operator-valued function space integral has been investigated by many mathematicians - Cameron, Storvick, Johnson, Skoug, Lapidus, Chang and author etc. But there are not that many papers related to the theory of the sequential operator-valued function space integral. In this paper, we establish the existence of the sequential operator-valued function space integral as an operator from $L_p$ to $L_p'(1 and investigated the integral equation related to this integral.

  • PDF

HILBERT-SCHMIDT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Kim, Ki-Sook
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.227-233
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation AX$\sub$i/=Y$\sub$i/, for i=1,2, ‥‥, R. In this article, we investigate Hilbert-Schmidt interpolation for operators in tridiagonal algebras.

COMPACT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRA

  • Jo, Young-Soo;Kang, Joo-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.485-490
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$ , for i, = 1,2,…,n. In this article, we investigate compact interpolation problems in tridiagonal algebra : Given vectors x and y in a Hilbert space, when is there a compact operator A in a tridiagonal algebra such that Ax = y?

GENERALIZED JENSEN'S EQUATIONS IN A HILBERT MODULE

  • An, Jong Su;Lee, Jung Rye;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2007
  • We prove the stability of generalized Jensen's equations in a Hilbert module over a unital $C^*$-algebra. This is applied to show the stability of a projection, a unitary operator, a self-adjoint operator, a normal operator, and an invertible operator in a Hilbert module over a unital $C^*$-algebra.

  • PDF

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?