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COMPACT INTERPOLATION FOR
VECTORS IN TRIDIAGONAL ALGEBRA

YOUNG S00 Jo AND JoO Ho KANG

ABSTRACT. Given vectors z and y in a Hilbert space, an inter-
polating operator is a bounded operator T such that Tz = y. An
interpolating operator for n vectors satisfies the equation Tz; = y;,
for i = 1,2,--- ,n. In this article, we investigate compact interpo-
lation problems in tridiagonal algebra : Given vectors z and y in a
Hilbert space, when is there a compact operator A in a tridiagonal
algebra such that Az =y 7

1. Introduction

Let C be a collection of operators acting on a Hilbert space H and
let z and y be vectors on H. An interpolation question for C asks for
which z and y is there a bounded operator T € C such that Tz = y.
A variation, the ‘n-vector interpolation problem’, asks for an operator
T such that Tz; = y; for fixed finite collections {z1,z2, -+ ,z,} and
{y1,¥2," -+ ,yn}- The n-vector interpolation problem was considered for
a C*-algebra U by Kadison [10]. In case U is a nest algebra, the (one-
vector) interpolation problem was solved by Lance [11]: his result was
extended by Hopenwasser [5] to the case that I/ is a CSL-algebra. Re-
cently, Munch [12] obtained conditions for interpolation in case T is
required to lie in the ideal of Hilbert-Schmidt operators in a nest alge-
bra. Hopenwasser [6] once again extended the interpolation condition
to the ideal of Hilbert-Schmidt operators in a CSL-algebra.

First, we establish some notations and conventions. A subspace lat-
tice L is a strongly closed lattice of projections acting on a Hilbert space
‘H. We assume that the projections 0 and I lie in £. We usually identify
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projections and their ranges, so that it makes sense to speak of an op-
erator as leaving a projection invariant. If each pair of projections in £
commutes, then £ is called a commutative subspace lattice, or CSL. If £
is CSL, AlgL is called a CSL-algebra. The symbol AlgL is the algebra of
all bounded linear operators on H that leave invariant all the projections
in £. Let z and y be two vectors in a Hilbert space. Then (z,y) means
the inner product of the vectors z and y. Let M be a subset of a Hilbert

space H. Then_v means the closure of M and M is the orthogonal
complement of M. Let N be the set of all natural numbers and let C be
the set of all complex numbers.

2. Results

Let H be a separable complex Hilbert space with a fixed orthonormal
basis {e1, €2, -+ }. Let x1,Z2,- -+ , 2z, be vectors in H. Then [z1,z2, -,
x,| means the closed subspace generated by the vectors zy,z2, - ,Zn.
Let £ be the subspace lattice generated by the subspaces [eax-1], [€2k-1,
€k, €2k+1) (K =1,2,---). Then the algebra AlgL is called a tridiagonal
algebra which was introduced by F. Gilfeather and D. Larson {3].

Let A be the algebra consisting of all bounded operators acting on H
of the form

with respect to the orthonormal basis {e1, €z, - - - }, where all non-starred
entries are zero. It is easy to see that AlgL=A. Let D={A: Ais a dia
-gonal operator onH}. Then D is a masa(maximal abelian subalgebra)
of AlgL and D=(Algl)N (AlgL)*, where (Algl)* = {A*: A € AlgL}.
Let B(H) be the set of all bounded operators acting on H.
In this paper, we use the convention % = 0, when necessary.

The following theorem is well-known.

THEOREM 1 [4]. Let A be a diagonal operator in B(H) with diagonal
{arn}. Then A is compact if and only if a, — 0 as n — oo.

THEOREM 2. Let z = (z;) and y = (y;) be two vectors in ‘H such that
x; # 0 for alli = 1,2,---. Then the following statements are equivalent.
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(1) There exists an operator A in Algl such that Az = y, A is
compact and every E in L reduces A.

l

(2) sup I Zle o By :leN,ap € Cand Ey € E} < oo and
. | 2okt ok E|

YnZ, — 0 asn — oo.

1
| > k1 ex Exyll

I L ox B
then, there is an operator A in Algl such that Az = y and every F
in £ reduces A by Theorem 1 ([9]). Since every E in L reduces A, A
is diagonal. Let A = (a;;). Since A = (a;;) is diagonal and Az = y,
ayx; = y; foralli = 1,2,---. Since y,z,! — 0asn — oo, A is compact.

Conversely, since Az = y and every E in £ reduces A, AEx =
Ey for every E in L. So A(ZézlakEkx) = 22:1 ayEpy for every
[l € N, every a, € C and every Ex € L. Thus || 22:1 apEryll <

!
_, o E
LA S anBeall. T | by arBxal) # 0, then 1= 0t Bl

PROOF. Ifsup{ :leNa,eCand Ep, € L) < 0,

| | 32 Bzl

| Al|. sup { | Zle o Byl :leNagpeCand Ep, € L < oo. Since
| 2 k=1 axErl|

every E in £ reduces A, A is diagonal. Let A = (a;;). Since Az =y,

y; = a;;x; and hence a;; = yixi_l foralli =1,2,---. Since A is compact,

yia:i‘l—>0asi—>oo. O

THEOREM 3. Let z, = (z5:) and y, = (ypi) be vectors in H such
that zq; # 0 for some fixed q, all i =1,2,--- and allp=1,2,--- ,n. If
there is an operator A in Algl such that Az, =y, (p = 1,2, ,n),
every E in L reduces A and A is compact, then

{ I Z;=1 Ez;”l O‘k,pEk,pyP“ .
” Zl =1 E;n=p1 ak,pEk,pmp”

-1 .
and ygz,; — 0 asi — oo.

mpeN,I<n, B € Land ap , € C}<oo

PROOF. Since Az, =y, and every F in L reduces A, AEz, = Ey,

!
for every p = 1,2,---,n. So A(3_,_, Soor o pErpTp) = Z;Zl S
ok pErpyp,mp € NJI <, Ey p € L and oy, € C. Thus

I mp I mp
E : § ,\ak,pEk,pyp § :E :O‘k,pEk,pwp

< Al
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1
| Ep.—.l ka:p1 ok,p Bk pyp

!
If | 3 opms k21 ckpBrpapll # 0, then P <
p=1 > k1 Yk Bk pZo|

||All. Hence
{ I Eé:l Z;cnzpl ok p Bk pypll .

: :
1> -0=1 EZZH ak,pEg,p Tl

Since every E in L reduces A, A is diagonal. Let A = (a;;). Since
Az, = Yp, Ypi = G4iTp; for all p=1,2,--- ;nand all i =1,2,---. Since
ZTgi # 0, aiy = yqixq_il (¢=1,2,---). Since A is compact, yqi:cq_il — 0 as
1 — 00. O

mp €N, I<n, Ey , €L and ak,pEC} < 0.

THEOREM 4. Let z, = (xp;) and yp, = (yp:) be vectors in ‘H such
that z,; # 0 for some fixed q, alli =1,2,--- and allp=1,2,--- ,n.

If sup { I E%=1 Eg=p1 ak,pEg,pypll :

” Zp:l Zkil ak,pEk,p-'Ep”
and yqimq_il — 0 as ¢ — oo, then there is an operator A in AlgL such
that Az, =y, for allp = 1,2,--- ,n, every E in L reduces A and A is
compact.

mp EN,I < n, By, € Land agp G(C} < 0o

PRrROOF. Without loss of generality, we may assume that

1 m
{ |3 p=1 2 k=1 Xk.p Bk ppll .

1 m :
1> p=1 2 k21 e, p B ,pZoll

mp €N, <n, B, € Land oy p EC} =1. So

ympEN,I<n, By ,€ Land ag p€C- - -(*).

I mp I mp
HZ Zak,pEk,pypH < ”Z Zak,pEk,PmP
p=1lk=1 p=lk=1

I mp
Let M = {}:Zak,pEk,me:mP eN,I<n,op€Cand Ey) Eﬁ}.

p=1 k=1

Then M is a linear manifold. Define A : M — H by A(Zi,:l o

ok pErptp) = Z;Zl Sk ok pEkpYp. Then A is well-defined by ().
Extend A to M by continuity. Define A|m¢ = 0. Clearly Az, =y, (p=
1,2,---,n) and ||A]| < 1. By an argument similar to that of the proof
of Theorem 2, every E in L reduces A. So A is a diagonal operator.
Let A = (ay;). Since yp, = Azp, ay = ypix;il (¢ =1,2,---). Since
yqix;il — 0 as ¢ — 00, A is compact. a

If we summarize Theorems 3 and 4, then we can get the following
theorem.
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THEOREM 5. Let z, = (zp;) and yp = (¥p:) be vectors in ‘H such
that x4; # O for some fixed q and all i = 1,2,---. Then the following
statements are equivalent.

(1) There exists an operator A in Algl such that Az, = y, (p =
1,---,n), every F in L reduces A and A is compact.

[ m
||2p:12k:p10‘k,pEk,pyp“

(2) sup ; T :
”Zp=1zk=1ak,pEkme“

—1 .
and ygz,; — 0 as i — oo.

mp €EN,I<n, B, € L and ak,pe(C} < 00

If we modify the proof of Theorems 3 and 4, then we can get the
following theorem.

THEOREM 6. Let z, = (z,;) and y, = (yp:i) be vectors in H(p =
1,2,---) such that x4 # 0 for all i and for some fixed q. Then the
following statements are equivalent.

(1) There exists an operator A in AlgL such that Az, = y, (p =
1,---) every E in L reduces A and A is compact.

I Zl =1 E:_—fl ak,pEk,pyP“
(2) sup ; i :
I Ep:]. 2o k21 Ok, pEk,pTpl|

-1 .
and yqx,; — 0 asi — oo.

mp, lEN,E, , € L and ap p, € (C} < 0o
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