COMPACT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRA

Young Soo Jo and Joo Ho Kang

ABSTRACT. Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for $i=1,2,\cdots,n$. In this article, we investigate compact interpolation problems in tridiagonal algebra: Given vectors x and y in a Hilbert space, when is there a compact operator A in a tridiagonal algebra such that Ax=y?

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let x and y be vectors on \mathcal{H} . An interpolation question for \mathcal{C} asks for which x and y is there a bounded operator $T \in \mathcal{C}$ such that Tx = y. A variation, the 'n-vector interpolation problem', asks for an operator T such that $Tx_i = y_i$ for fixed finite collections $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$. The n-vector interpolation problem was considered for a C^* -algebra \mathcal{U} by Kadison [10]. In case \mathcal{U} is a nest algebra, the (onevector) interpolation problem was solved by Lance [11]: his result was extended by Hopenwasser [5] to the case that \mathcal{U} is a CSL-algebra. Recently, Munch [12] obtained conditions for interpolation in case T is required to lie in the ideal of Hilbert-Schmidt operators in a nest algebra. Hopenwasser [6] once again extended the interpolation condition to the ideal of Hilbert-Schmidt operators in a CSL-algebra.

First, we establish some notations and conventions. A subspace lattice \mathcal{L} is a strongly closed lattice of projections acting on a Hilbert space \mathcal{H} . We assume that the projections 0 and I lie in \mathcal{L} . We usually identify

Received November 28, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 47L35.

Key words and phrases: compact interpolation, CSL-algebra, tridiagonal algebra, $\mathrm{Alg}\mathcal{L}.$

projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If each pair of projections in \mathcal{L} commutes, then \mathcal{L} is called a commutative subspace lattice, or CSL. If \mathcal{L} is CSL, Alg \mathcal{L} is called a CSL-algebra. The symbol Alg \mathcal{L} is the algebra of all bounded linear operators on \mathcal{H} that leave invariant all the projections in \mathcal{L} . Let x and y be two vectors in a Hilbert space. Then $\langle x,y\rangle$ means the inner product of the vectors x and y. Let M be a subset of a Hilbert space \mathcal{H} . Then \overline{M} means the closure of M and \overline{M}^{\perp} is the orthogonal complement of \overline{M} . Let $\mathbb N$ be the set of all natural numbers and let $\mathbb C$ be the set of all complex numbers.

2. Results

Let \mathcal{H} be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \dots\}$. Let x_1, x_2, \dots, x_n be vectors in \mathcal{H} . Then $[x_1, x_2, \dots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \dots, x_n . Let \mathcal{L} be the subspace lattice generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ $(k = 1, 2, \dots)$. Then the algebra $Alg\mathcal{L}$ is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson [3].

Let \mathcal{A} be the algebra consisting of all bounded operators acting on \mathcal{H} of the form

with respect to the orthonormal basis $\{e_1, e_2, \dots\}$, where all non-starred entries are zero. It is easy to see that $Alg\mathcal{L}=\mathcal{A}$. Let $D=\{A: A \text{ is a dia -gonal operator on }\mathcal{H}\}$. Then D is a masa(maximal abelian subalgebra) of $Alg\mathcal{L}$ and $\mathcal{D}=(Alg\mathcal{L})\cap (Alg\mathcal{L})^*$, where $(Alg\mathcal{L})^*=\{A^*: A\in Alg\mathcal{L}\}$.

Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded operators acting on \mathcal{H} . In this paper, we use the convention $\frac{0}{0} = 0$, when necessary.

The following theorem is well-known.

THEOREM 1 [4]. Let A be a diagonal operator in $\mathcal{B}(\mathcal{H})$ with diagonal $\{a_n\}$. Then A is compact if and only if $a_n \to 0$ as $n \to \infty$.

THEOREM 2. Let $x = (x_i)$ and $y = (y_i)$ be two vectors in \mathcal{H} such that $x_i \neq 0$ for all $i = 1, 2, \cdots$. Then the following statements are equivalent.

- (1) There exists an operator A in $Alg\mathcal{L}$ such that Ax = y, A is compact and every E in \mathcal{L} reduces A.
- $(2) \sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty \text{ and } y_n x_n^{-1} \to 0 \text{ as } n \to \infty.$

PROOF. If
$$\sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty$$
, then, there is an operator A in $Alg\mathcal{L}$ such that $Ax = y$ and every E in \mathcal{L} reduces A by Theorem 1 ([9]). Since every E in \mathcal{L} reduces A . A

in \mathcal{L} reduces A by Theorem 1 ([9]). Since every E in \mathcal{L} reduces A, A is diagonal. Let $A = (a_{ii})$. Since $A = (a_{ii})$ is diagonal and Ax = y, $a_{ii}x_i = y_i$ for all $i = 1, 2, \cdots$. Since $y_nx_n^{-1} \to 0$ as $n \to \infty$, A is compact. Conversely, since Ax = y and every E in \mathcal{L} reduces A, $AEx = x_i$

Ey for every E in \mathcal{L} . So $A(\sum_{k=1}^{l} \alpha_k E_k x) = \sum_{k=1}^{l} \alpha_k E_k y$ for every $l \in \mathbb{N}$, every $\alpha_k \in \mathbb{C}$ and every $E_k \in \mathcal{L}$. Thus $\|\sum_{k=1}^{l} \alpha_k E_k y\| \le \|A\| \|\sum_{k=1}^{l} \alpha_k E_k x\|$. If $\|\sum_{k=1}^{l} \alpha_k E_k x\| \ne 0$, then $\frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} \le \|A\| \|\sum_{k=1}^{l} \alpha_k E_k x\|$.

 $||A||. \sup \left\{ \frac{\|\sum_{k=1}^{l} \alpha_k E_k y\|}{\|\sum_{k=1}^{l} \alpha_k E_k x\|} : l \in \mathbb{N}, \alpha_k \in \mathbb{C} \text{ and } E_k \in \mathcal{L} \right\} < \infty. \text{ Since}$

every E in \mathcal{L} reduces A, A is diagonal. Let $A=(a_{ii})$. Since Ax=y, $y_i=a_{ii}x_i$ and hence $a_{ii}=y_ix_i^{-1}$ for all $i=1,2,\cdots$. Since A is compact, $y_ix_i^{-1}\to 0$ as $i\to\infty$.

THEOREM 3. Let $x_p = (x_{pi})$ and $y_p = (y_{pi})$ be vectors in \mathcal{H} such that $x_{qi} \neq 0$ for some fixed q, all $i = 1, 2, \cdots$ and all $p = 1, 2, \cdots, n$. If there is an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ $(p = 1, 2, \cdots, n)$, every E in \mathcal{L} reduces A and A is compact, then

$$\sup\left\{\frac{\|\sum_{p=1}^l\sum_{k=1}^{m_p}\alpha_{k,p}E_{k,p}y_p\|}{\|\sum_{p=1}^l\sum_{k=1}^{m_p}\alpha_{k,p}E_{k,p}x_p\|}: m_p\in\mathbb{N}, l\leq n, E_{k,p}\in\mathcal{L} \text{ and } \alpha_{k,p}\in\mathbb{C}\right\}<\infty$$

and $y_{qi}x_{qi}^{-1} \to 0$ as $i \to \infty$.

PROOF. Since $Ax_p = y_p$ and every E in \mathcal{L} reduces A, $AEx_p = Ey_p$ for every $p = 1, 2, \cdots, n$. So $A(\sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p) = \sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p, m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L}$ and $\alpha_{k,p} \in \mathbb{C}$. Thus

$$\left\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p \right\| \le \|A\| \left\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p \right\|.$$

If
$$\|\sum_{p=1}^{l}\sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p\| \neq 0$$
, then $\frac{\|\sum_{p=1}^{l}\sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{p=1}^{l}\sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p\|} \leq \|A\|$. Hence

$$\sup\left\{\frac{\parallel\sum_{p=1}^{l}\sum_{k=1}^{m_p}\alpha_{k,p}E_{k,p}y_p\parallel}{\parallel\sum_{p=1}^{l}\sum_{k=1}^{m_p}\alpha_{k,p}E_{k,p}x_p\parallel}: m_p\!\in\!\mathbb{N}, l\!\leq\!n, E_{k,p}\!\in\!\mathcal{L} \text{ and } \alpha_{k,p}\!\in\!\mathbb{C}\right\}\!<\!\infty.$$

Since every E in \mathcal{L} reduces A, A is diagonal. Let $A=(a_{ii})$. Since $Ax_p=y_p,\ y_{pi}=a_{ii}x_{pi}$ for all $p=1,2,\cdots,n$ and all $i=1,2,\cdots$. Since $x_{qi}\neq 0,\ a_{ii}=y_{qi}x_{qi}^{-1}\ (i=1,2,\cdots)$. Since A is compact, $y_{qi}x_{qi}^{-1}\to 0$ as $i\to\infty$.

THEOREM 4. Let $x_p = (x_{pi})$ and $y_p = (y_{pi})$ be vectors in \mathcal{H} such that $x_{qi} \neq 0$ for some fixed q, all $i = 1, 2, \dots$ and all $p = 1, 2, \dots, n$.

$$\begin{split} & \text{If } \sup \left\{ \frac{\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p \|}{\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p \|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty \\ & \text{and } y_{qi} x_{qi}^{-1} \to 0 \text{ as } i \to \infty, \text{ then there is an operator } A \text{ in } Alg\mathcal{L} \text{ such that } Ax_p = y_p \text{ for all } p = 1, 2, \cdots, n, \text{ every } E \text{ in } \mathcal{L} \text{ reduces } A \text{ and } A \text{ is compact.} \end{split}$$

PROOF. Without loss of generality, we may assume that

$$\sup \left\{ \frac{\|\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p\|} : m_p \in \mathbb{N}, l \le n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} = 1. \text{ So}$$

$$\left\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p \right\| \leq \left\| \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p \right\|, m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \cdot \cdot \cdot (*).$$

$$\text{Let } \mathcal{M} = \Bigg\{ \sum_{p=1}^l \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p : m_p \in \mathbb{N}, l \leq n, \alpha_{k,p} \in \mathbb{C} \text{ and } E_{k,p} \in \mathcal{L} \Bigg\}.$$

Then \mathcal{M} is a linear manifold. Define $A: \mathcal{M} \longrightarrow \mathcal{H}$ by $A(\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p) = \sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p$. Then A is well-defined by (*). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\overline{\mathcal{M}}^{\perp}} = 0$. Clearly $Ax_p = y_p$ ($p = 1, 2, \dots, n$) and $||A|| \leq 1$. By an argument similar to that of the proof of Theorem 2, every E in \mathcal{L} reduces A. So A is a diagonal operator. Let $A = (a_{ii})$. Since $y_p = Ax_p$, $a_{ii} = y_{pi}x_{pi}^{-1}$ ($i = 1, 2, \dots$). Since $y_{qi}x_{qi}^{-1} \to 0$ as $i \to \infty$, A is compact.

If we summarize Theorems 3 and 4, then we can get the following theorem.

THEOREM 5. Let $x_p = (x_{pi})$ and $y_p = (y_{pi})$ be vectors in \mathcal{H} such that $x_{qi} \neq 0$ for some fixed q and all $i = 1, 2, \cdots$. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ ($p = 1, \dots, n$), every E in \mathcal{L} reduces A and A is compact.

$$(2) \sup \left\{ \frac{\|\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p\|} : m_p \in \mathbb{N}, l \leq n, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty$$
and $y_{qi} x_{qi}^{-1} \to 0 \text{ as } i \to \infty.$

If we modify the proof of Theorems 3 and 4, then we can get the following theorem.

THEOREM 6. Let $x_p = (x_{pi})$ and $y_p = (y_{pi})$ be vectors in $\mathcal{H}(p = 1, 2, \cdots)$ such that $x_{qi} \neq 0$ for all i and for some fixed q. Then the following statements are equivalent.

(1) There exists an operator A in $Alg\mathcal{L}$ such that $Ax_p = y_p$ ($p = 1, \dots$) every E in \mathcal{L} reduces A and A is compact.

$$(2) \sup \left\{ \frac{\|\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} y_p\|}{\|\sum_{p=1}^{l} \sum_{k=1}^{m_p} \alpha_{k,p} E_{k,p} x_p\|} : m_p, \ l \in \mathbb{N}, E_{k,p} \in \mathcal{L} \text{ and } \alpha_{k,p} \in \mathbb{C} \right\} < \infty$$
 and $y_{qi} x_{qi}^{-1} \to 0$ as $i \to \infty$.

References

- W. B. Arveson, Interpolation problems in nest algebras, J. Functional Analysis 3 (1975), 208-233.
- [2] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [3] F. Gilfeather and D. Larson, Commutants modulo the compact operators of certain CSL algebras, Operator Theory: Adv. Appl. 2 (Birkhauser, Basel, 1981), 105-120.
- [4] P. Halmos, A Hilbert Space Problem Book, Springer-Verlag, 1982.
- [5] A. Hopenwasser, The equation Tx = y in a reflexive operator algebra, Indiana University Math. J. **29** (1980), 121–126.
- [6] _____, Hilbert-Schmidt interpolation in CSL algebras, Illinois J. Math. 33 (1989), no. 4, 657-672.
- [7] Y. S. Jo, *Isometries of Tridiagonal Algebras*, Pacific Journal of Mathematics **140** (1989), no. 1, 97–115.
- [8] Y. S. Jo and T. Y. Choi, *Isomorphisms of AlgL*_n and $AlgL_{\infty}$, Michigan Math. J. **37** (1990), 305–314.
- Y. S. Jo and J. H. Kang, Interpolation problems in CSL-Algebra AlgL, to appear in Rocky Mountain Journal of Math.

- [10] R. Kadison, Irreducible Operator Algebras, Proc. Nat. Acad. Sci. U.S.A. (1957), 273–276.
- [11] E. C. Lance, Some properties of nest algebras, Proc. London Math. Soc. 19 (1969), no. 3, 45–68.
- [12] N. Munch, Compact causal data interpolation, J. Math. Anal. Appl. 140 (1989), 407–418.

Young Soo Jo Department of Mathematics Keimyung University Taegu, Korea E-mail: ysjo@kmu.ac.kr

Joo Ho Kang Department of Mathematics Taegu University Taegu, Korea E-mail: jhkang@daegu.ac.kr