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SEQUENTIAL OPERATOR-VALUED FUNCTION
SPACE INTEGRAL AS AN /£(L,,L, ) THEORY

K.S.RYU

1. Introduction and Preliminaries

In 1968, Cameron and Storvick introduced the analytic and the se-
quential operator-valued function space integral [2]. Since then, the
theory of the analytic operator-valued function space integral has been
investigated by many mathematicians - Cameron, Storvick, Johnson,
Skoug, Lapidus, Chang and author etc. But there are not that many
papers related to the theory of the sequential operator-valued function
space integral. In this paper, we establish the existence of the sequen-
tial operator-valued function space integral as an operator from L, to
L, (1 < p < 2) and investigated the integral equation related to this
integral.

Now, we present some necessary notations and some facts which are
needed in our subsequential sections. Insofar as possible, we adopt the
definitions and notations of [2] and [9].

A. Let C, C4 and C7 be the set of all complex numbers, all complex
numbers with positive real part and non-zero complex numbers with
non-negative real part, respectively. Given a real numbers d such that
1 < d < +4oc, d and d will be always related by % + % =1. If
1 <p < 2isgiven, let a in (1, +oc) be such that a = 513; And N will
be a natural number restricted so that N < 2q, r will be a real number

2¢v

such that 525 <7 < +oo and we let 6 = % Note that 0 < 7’6 < 1.
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B. Let 1 < p < 2 be given. For X in C7, ¢ in L,(R"), £ in R¥Y
and a positive real s, let

(CA/3¢)(§)

:(.L)N/2 [ v exp(—:\—t-ly—‘i—g—”—i)dmdu) (1.1)

27s

where my is the Lebesgue measure on R, if N is odd, we always
choose A~3% with non-negative real part and if ReA = 0 the integral in
the above should be interpreted in the mean just as in the theory of
the L, Fourier transform. From [9], C»/, is in £(L,, Ly ), the space
of all bounded linear operator from L,(R™) to L, (RM), ||Cy/s|| <
(IAl/27s)% and as a functions of A, Cy/s 1s analytic in C4 and strongly
continuous in CJ.

REMARK. In the above notations, for XA in C4 and ¢ in L,,:(RN), by
the Holder inequality, we have [(Ch/.¢)(€)] < (|A|/pRe/\)N/2p(%%L-)N/2
x(;%':—A)N/zpnngp:. Hence, for all £ in RY, (Cy/,¢)(€) is well-defined.
Therefore, from the Fubini theorem and the Chapman-Kolmogorov
equation [6], Cx/s, (Ch/s, %) = Cxj(s1+5,)¥ Where s1 and s; are positive
real numbers and ¥ is in L,(R"). Hence, we use the convention

Cr/s:(Cays, ) = (Cirysy 0 Cryoy . (1.2)

C. Let t > 0 be given. M™[0,¢] will denote the set of all com-
plex Borel measures 1 on the interval [0, ¢] which satisfies the following
conditions;

(1) n({0}) =n({t}) =0

(2) If p is the continuous part of 7, then the Radon-Nikodym
derivative d|u|/dm exists and is essentially bounded where m
is ordinary Lebesgue measure on [0, ¢].

D. Let C[0,t] = C be the space of R"-valued continuous functions
y on [0,t]. Let Cy[0,¢] = Cy be the subspace of C which vanishes at
0. We consider as equipped with N-dimensional Wiener measure m,,,.
Infact, every element y in C has a unique reprsentation y = z 4+ ¢ where
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zisin Cg and £ in RN Let 8]0, t] = S denote the space of all piecewise
continuous functions on [0,t]. In this paper, we will be concerned with
only the uniform topologies on C, Cy and S, respectively.

E. For 7 in M~[0,1], let Lar,~([0,] x RY) = L7, be the space

of all C-valued functions € such that € is continuous  x mp — a.e. on

0.¢] x RN and
[0, 1]

1Bllarn = { /[ ’] ||9(s,-)t|;d|n|(s)} (13)

and

18lloo1on = / 1806l () (1.4)

are finite.
For 6 in L.y~ a measurable subset A of [0, ¢], we define a function
6(A) on RY given by

[9(44)](11):/ O(s,u)dn(s). (1.5)

A
By the Minkowski’s integral inequality [11], the Holder inequality and

the Fubini theorem, we have 8(A) is in Lo(R™) N Loo(RYN) for any
measurable subset 4 of {0,1].

REMARK. Let 1 € ¢ < 4oc be given and let H be a C- valued
measurable function on [0, t]x RY such that H(s,-)isin L, (R") for n—
a.e. s and f[o,t] I1H (s, )||q dIn](s) is finite. By the Pettis’s measurability
theorem, the Minkowski’s integral inequality and Lemma 1 in [4, p52],
we can prove that H(s,-) is Bochner integrable with respect to n and

B - H(S,-)dn(s):L—/ H(s,-)dn(s) (1.6)
[0.1] (0,1

for my, — a.e. where B — (L—) f[o 0 H(s, ) dn(s) refers to the Bochner
(Lebesgue) integral, respectively. In general, the equality (1.6) is not
true whenever ¢ = oc.
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Let ¢ be in Lo(R"™). From Lemma 1.3 in [9, p129], a function
My : Ly(RY) —» Ly(RN) defined by My(f) = fo, is in £(Ly, L)
and || My|| < ||¢|l«- It will be convenient let 6(s) denote My, .y and 64
denote Mgy for 6 in L7,. where A is a measurable subset of [0,1].

ar:n
F. Let F be a functional on C. Given A > 0, % in L,(R™) and ¢ in
RY, let

[IA(F)$)(E)

=/ FOTY22 4 6)yp(A 7 22(1) + €) dmou(z). (1.7)

If for my — a.e. £ in RN, [IN(F)¥)(€) exists in L, (R™) and if the
correspondence 1 — Iz(F)¢ gives an element of £(L,, L, ), we say
that the operator-valued function space integral I (F') exists for A.
Suppose there exists Ag, A1 (0 < Ag < A1 < 400) such that Ix(F') exists
for all Ao < A < Ay and there exists an £(Lp, Ly )-valued function
which is analytic in Cy 0, = C4N{z € C|A < |A] < At} and
agree with Iy (F") on (g, A1), then this function is called the operator-
valued function space integral of F' associated with Ap and in this case
we say that I$"(F) exists for A in Cq ag,a,, If I§7(F) exists for A
in Cy 0,0, Ia(F) is strongly continuous in C7 , 5, = CTN{z €
C | Xo < |A| < A1} we say that I{"(F) exists for A in C7 5, 3, - When
A is purely imaginary, I3"(F') is called the analytic operator-valued
Feynman integral of F.

G. Let 0: 0 =1t < t; <t <--- <t, =t be any partition of [0,¢]

.....

For z in C, we define

x(tir), tiog <5<ty
xa(s)z{ (fiz1) Sl =e (1.8)
a(t), if 5=t
If 0 is given as in the above and {vy,vy, - ,v,} is any set of n 4 1

elements of R™, we define a function

vier, ity <t <t

Un,s if s =1t

(1.9)

Z(‘U;'UO,UI,"' avn;s) = {
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Clearly, z, and z(0;vo,v1, - ,Uy;-) are in S. And, for a given func-
tional F on S, f,(vo,v1, -+ ,v,) is given by
fola(to),x(tr), -+ ,z(tn)) = F(z(o;z(to), -+ ,x(tn); ")) (1.10)

for z in C.
Let A be in C4 and let ¥ be in L,,(R‘M). Let F be a C-valued

functional on §. For a given partition 0 : 0 =ty < t; <ty < -+ <
t, = t, the operator IT(F) is defined by the formula
IS (F))(€) (1.11)

/\n N/Z{()W)vrtl(tQ _ tl (t - tn l)}-—N/2

X / fa(v(){(‘lﬁ" ,U17,)¢(vn)
R"N '

n
Vy — Uy
x e\p{——z I t] —f]J 1” }(meL(v,-)
1=1

where vy = £.

Suppose there exists Mg, A\1(0 < Xg < A; <l +00) such that for all
Ain Cy xgn s I(F)p exists for all ¢ in L,(R™) and the weak limit
I F) =w=limy,j—o I{(F) exists in £(L,, L,), we say that I3*?(F)
exists for A in Cq aga,. If IVY(F) exists for XA in C4 a,.a, and the
strongly limit I_lq(F) = s~ limaec, \, .\, Ix ((F) exists in L£(Lp, Ly)

A—r—2q

(F) exists in CF , ,,, this is called

for Ao < [g] < Ay, we say that 17!
the sequential operator-valued Feynman integral of F. When I3"(F')
and I;%(F) exists in C7 5 , for some \g < Ay and these are same, we
say that I{(F) = I{"(F) = I;/(F) is the operator-valued Feynman
integral of F.

Let 6 be in Ly, andlet 0 : 0 =t < t; < --- <t, =t be agiven

partition on [0.t]. Let
Fy) = / A(s.y(s)) dn(s) foryin S (1.12)
[0,4]

for which the integral exists. From Lemma 0.1 of [8] and the elemen-
tary calculus, we have, for A > 0, F(A™'/%z + £) and FOA~Y%z, + £)
is defined for m,, x my —a.e.(x,€)in Cy x RY and

FO™ 2 4 )] < [6]locain. (1.13)
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H. Let X and Y be two Banach spaces, L(X,Y) a space of bounded
linear, operators from X into ¥ and (£2,m) be a measure space. Let
G :Q — Z(X,Y) be a function such that for each z in X, {G(s)}(z)
is Bochner integrable with respect to m. Then there exists a linear
operator J from X to Y such that

J(z)=B - /Q{G(s)}(x)dm(s) for z in X. (1.14)

This linear operator J is denoted by (BS) — [,{G(s)} dm(s). When
X =Y, Jis called the strongly integral of G [see 3].

2. Sequential operator-valued function space integral

In 1992, Chang and the author introduced the theory of the analytic
operator -valued function space integral as an operator L, to L, (1 <
p < 2) for certain functional involving some Borel measures [2]. In
this section, we will establish the existence of the sequential operator-
valued function space integral as an operator L, to L, under the some
conditions different from the conditions given in [2].

Throughout this section, let 1 < p < 2 be given and let n be in
M™[0,t]. Assume p is a continuous part of n and v = Z:;] wpb,, is
a discret part of n where é, is the Dirac measure with total mass one
concentrated at T and 0 = 79 <7 < T2 < -+ < T <X They = t. And
let 7 be a positive integer such that I'(j(1—7'8)) is a minimum value of
{T'(2(1 — r'8)) |7 is a natural number} where T is a Gamma function.
For A in C7, let

(h+1)6 ,
By =(51) Tl rey) (2.1)

27

h+1
X {H(Tp - Tp_l)“‘}m — &) and
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And for non-negative integers ¢, q1, -+ ,q; and J1,72,  yJh+1 with
Ji+d2 4+ a1 = qo, let

A‘]O;jl J2a  Th 41 (22)
:{(S],Sz,"',sqo)in [O,t]q°]0<31<52 < e << 8y, <T1<S]'l+1<
TSy T2 < < Th < Sjihegatl <

C< Shitetiag = S0 < t}

and for (s1,59,-- , 8,4, ) in Bgoijrgargngrsmin{1,2,--- A}, 8in L7, .
and A in C7, let
L, (2.3)

— gm . 5
_9(7-711) o CA/(SJL_*.. .+_,‘m+]—Tm) © 6(S]1+"‘+]m+l)
© C/\/(3j1+ Chim A28 b dim ) O
Q- . - !
0 9(->Jx+]2+---+1,.,+1 ) o C/\/(Tm+1"Sjl+--v+jm+1)'

Hence, we let §(7)° = 1, an identity map on L, (R¥). For a natural
number m, let

FM(y) = { : ]9 5,y(s))dn( )} for y in S. (2.4)
0,1

If m = 0, from the definition, directly IH(F°) = Cyy¢ for A in C3.

THEOREM 2.1. Under the assumptions and notations in the above,
the operator I$"(F™) exists for A in CY ort 400 and for all X in

C+ 2t oo
an m. w (ll ' W Z ’
ME™)y=m! Y ——r > (BS) (2.5)
qo-gn=m (J]A QI;. ]’1+"‘+_]‘h+1:l]0
qo
—/ LooL]~)~~~oL/,de(s
Bagijr gy, b1 1=1
Moreover, for all A in C7 ,_, +oos
I3 (™) (2.6)
1/ &
1 /7 d ' M I / N l/r' ‘ ' '(]—r'é)/'r’
S(m) B(/\) —_— F(]_ — 7 (S) —_ K HB”ar:u
dm 27

IL m
DI RN TESTRI
=1
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Proof. From the similar method as in the proof of Theorem 2.3
in [2,p704], the operator I{”(F™) exists for all A in CF 55y 4o and
the equality (2.5) holds. Now, let A be in CJ 5r¢ 4o and let ¢ be in

L,(RM). Then

5™ (F™ )]

(1) | wy |9 - | wp |9
<mllyll, > —— X

oo gy
ot -Fgn=m Qi dn

(2.7)

> oo Ly -0 Lulla [ (o9

Jite+inp1=qo Aot dhgr

(2) Lo | wy |98
Sy, S Ll lhlq(

Voo gp!
got-gn=m q1- qh-

h
x TTA16Cr oo v 18C1, ) lar)”

=1

x2/A

h++Iirs1=q0 901 i1 =1

qo
X {(31(32 —s1) (T =85 ) e (8 —Sqo)}_édn Ll (si)
i=1

(3) ] Wi |l]l e | wy, ]q’l
<mlllgl, >

)(90+h+1)6

(H 16(s:.la )

Vo]
Jot- tgn=m q1- qhn-

h

x TT8C oo V18T, la)™

X

-~

)(90-+IL+1)6

(
1
g0 q0 1/r
[ (ER0 (I);

: { Z / {(s1(s2 —s1)--- (¢ __Sqa)}—r’é

i+t iny1=qg0 Do dngr

q0 1/+
<[l 1l (0}
=1
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4)
<m!||¢|lp
(go+h+1)6
Cx el (A
1o gp! 2 ©
vot T0 —m q1: qh- 27T
d|u vl
XHWMWMWWmHVWWﬂ%J
b S r ] l/r,
X Z Hpi;{(Tp — Tp— l)h Upth) 6F(1 - r’6)1p+1}
R+ 1
Ji4tint1=40 [Tt TG + 1)1 =178
<”u“p(i F!) D((1 - r8)) Y/
h+1 m! '
< [[(rp = 7p—1) 70T (1 = ¢/ 8)RH/7 prpn s 1L
Tg I " 90+»-§h=rn qo!ql qh'( )
8 1/r e
X [ A dln] T(1—r'8)Y" KO="900|l4ren
27 dm ‘
o0

H@m|wmwuvwmwm}

1/
HdlM I\(l_?,/&)l/'r"(l)") I(l r'8) /'
o

(6 i )
ﬂmW”WMMM{

o0

h m

xwmm+§jwwwmmMWNWmﬂmH
=1

Step (1) results from the properties of the Bachner integral and the
multinomial expansion. For any non-negative integer m, ||8(7)™| <
(16(7, Moo V [|16(7 || )" and for) in c:,Q,,t,m, 1Cx/s, © Cass,ll <
(1 A | /27(s; -er') (0 X ] /27s1)%(] A | /27s9)®. Hence we
have Step (2). Ublllg_j the same techniques as in the proof of Theo-
rem 2.2 in [2, p703] and the Hélder inequality, we obtain Step (3).
Since fabj:m f“{ (s1 —a)(sp—s1) - (b—s,,)} " Hdsidsy - dsm =

_ m-(m41)u m+1
(b a)r((mﬂ)(f_lu))u) for 0 < u < 1,we have Step (4). Step (5) fol-
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lows from the some basic inequalities. From the notation (2.1) and
multinomial expression, we have Step (6). Therefore, the theorem is
proved.

From the above Theorem and the ratio test, we Lave the following
theorem.

THEOREM 2.2. Under the assumptions in the above, if we let

F(y)=exp{ /[ Bsusndns)} foryins,(28)

]

the operator I$"(F) exists for all A in CJ 5ry 40 and for all A in

CI,‘Zwt,+coy
I3™(F) (2.9)
=3 stk oy
- ... !
m=0 go+---gp=m a1 Ik Jite+ingy1=qo

qo
Loo L, o---oLhdHu(s,-).
i=1

20551, Jh41

Moreover, for A in CF 5n4 4005
I3 (F)Y)] is finite. (2.10)

Now, we will establish the existence of the sequential operator-
valued function space integral as an operator L, to Ly (1 < p < 2)
for certain functional which involving some Borel measures. Before
giving the existence of this integral, we investigate the some properties
of I{(F).

Suppose there is a separable dense subset T of [0, ¢] such that for ¢
inT,

AN SEDTRERIPE

Let 0: 0 =15 <t <ty <---<t, =1t be a partion on [0,t] with ¢; in
Tfori=1,2,---,n,let ¢in L,(RY), let A be in C7 and let £ be in
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R". Then, by the definition of f, and IS(F),
fot (x(to), a(tr), -+, x(tn))
(Z/ a,a:(t,-__l))dzy(s)) (2.11)
[ti-1,1
and
[ZS(F™)e)(€) (2.12)
—12
ATU\/?{(‘) )m’\ f)—tl) (tn"tn—l)}

.M

x Vn) (s,0;_ )dn(s))

./R"N <Z »/tj ,,t) =t ,

xexp{ Z HUt :l;] 1|)| }dH'va(Ui)
7= =1

—1,/2 m

!
)\nN/‘Z nAt to — ) (¢, — — —__m—
{( )"t (b = t) o (ty — taet) kz:%(m_k)gk[

m—k
k!
X (s, &) dn (\)) —_—
(/[to,m( o Z @l gno!

qrtFgao1=k,q: >0

n—1

i o dts)) los = via]?
x/R"N g <‘/[fh“+l)9(6,0,)(11}(o)> e\b{ Z : ——t]J y }

X Y(v,)d H mp{v,)
py

!
m. .
2 9171 A 2 .
(m—k'A' (0.1 Qe !

<I1+"-+qn-1:’~'

x [Ck/tx o0 10y 0 Cnf(ta—1y 0 - B 2 Onjtta—ta ¥ (6)

THEOREM 2.3. Under the assumptions and notations in the above,
IZ(F™) is well-defined as an operator from L, to L, for all X in C7y,
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I{(F™) is analytic in C4 and is strongly continuous in C3 2r¢ 4oo-
And

IIZ(F™)|| is finite. (2.13)

Proof. From the equality (2.12) in the above, clearly IJ(F™) is well-
defined for all A in C7. Let ¢ and ¢ be in L,,(RN). Then

(5myw.o) (2.14)
::A"N/z{(QW)"Ntlﬁz'*tl)'”(tn~—tn—1)}—d/“

S B (X[

xexp{ Z”t _’;f] 1]” }deL(v

(3,v5-1) dn(s))

The integrand of the right side of the equality (2.14) is dominated by
[1i, mL-integrable function

—1/2
(X +1)"”’2{(2w>"Nt1<t2 )t - tn_l)} -
1

n 2

Y e
2 & tj—tio
Hence, by the Dominated Convergence Theorem, (I{(F™)¢, ) is a
continuous function of A in C4. Using the Morera’s Theorem, we can
conclude that (IJ(F™)y,¢) is analytic for A in C4 and so I{(F™) is
analytic for A in C [see 12, p189]. Let ¢ be a given real number with
| g|>2nt. For1 <1< n,let

A H[T(r)ltlk) 0 C——iq/11 0--+0 C—iq/(t,—t,_l) (2.16)

[!1,11+1) 0 Cx/(tigr—10) © Onfltn =t ¥
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and let
by = 9[11 tigr) C/\/(fz+1—fl) Q-0 C/\/(tn—t,,,_l)w' (2‘17)
Then
MS(E™ )0 = I7, (F™ )bl (2.18)
m!
Dyt i Ay
= YA Z . (—1flp
k l\ b dgn =k qi- Qn—l i—1
k!
< P —
Z m_pp Z PN
il Gt g =k
n qi
I (T
=1 1==0 p
q
x I—[l {‘77' 1) } HC/\/ t—t; )1 — C—rq/(t —11_1)¢IH
J‘

where g9 = m — k. From B in Section 1, I{(F"™) is strongly continuous
on C¥ 5 400 And the inequality (2.13) is clear by the elementary
calculus. Hence, the proof of this theorem finished.

THEOREM 2.4. Under the assumptions and notations in the above,
LY F™) exists for A in CF 4y 4o and INYY(F™) = I$"(F™) for A in

CT 2rt 400 Moreover, the operator-valued Feynman integral I { (F™)
exists for A in CY 51 oo

Proof. Let M be a given positive real number, let 27t < A < M,
let ¢ be a partition on [0,] and let ., be in L,(R"™). Then by the
Wiener integration formula,

[IS(F™))(€) (2.19)
:/ Fr(A A2y o +E) (A 1/2.17(t)+.f)dmw(:c).
Co

By the similar method as in the proof of Lemma 3 in [1, p527],
the limit ”11”111 (IS(F™ )b, @) exists and equals (In(F™ ), ¢). And
by Theorem 2.3

{(IK(F'"’ )Ur,fp)l is finte. (2.20)
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Hence by the Vitali’s Theorem [5, p104], w — lim I{(F™) = I;*/(F™)
exists and (I;eq(F"")I,b, ) is analytic on C4 2x¢ a. By the uniqueness
theorem in [5], (I3*Y(F™)y,p) = (I8 (F™)ih,¢) for A in Cy 2mem.
Since M was arbitrary, I,°/(F™) exists and I3*/(F™) = I{"(F™) for
Ain C4 27t 400- The proof of the theorem is completed.

From Theorem 2.4, we can easily prove the main theorem in this
section.

THEOREM 2.5. Under the assumptions and notations in the above,
the operator-valued Feynman integral I/{(F) exists for A in C¥ 5ny oo
and

H(F) (2.21)
oo 'R qh

Yy s s

- Peeogp!

m=0 go+-+ga=m N I JitHip1=qo

x(BS)—/A

qo

LooLio---0Ly dl—.[ w(si).
i=1

901 TR

3. The integral equation for the operator-valued feynman
integral

In this section, we prove that the operator-valued Feynman integral
in the above Theorem 2.5 is a solution of a related integral equation.

Let £ be a given positive real number, 1 < p < 2 be given, let 7 be
in M™~[0,?] and let 6 be in L3,.,. We assume that 4 is a continuous
part of n and v = Z;};l:l wpb,, is a discrete part of n with 0 < 7y <
Ty < -+ < 7 < t. Denote ;(s,-) = 6(¢t — s,-). For u in (74,1], let

G.(y) = exp(/ 8(u— s, y(u—s)) dn(s)) foryinS, (3.1)
{0,u)
let

Gr,(y) =exp (/ O(7h — s,y(Th — s)) dn(s)) foryin S, (3.2)
[0,74)
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and for nonnegative integers o, qy, - ,qn,j1,- -+ ,jn+1 and for (81, s2,
: ’SQO) € Aflo;jl"",]h+17 lf’t
L(go,q15 . qn3 31, Jh41; h) (3.3)

:C/\/(u—sqo) O Ou(sqo ) 0--+0 C)\/(s —74) 0 911(Th)qh0

J1+ o+ 4
08, () o C'/\/(Tl‘-"jl) 0---08,(s1)0Chryy,-

Then, from Theorem 2.5, the operator- valued Feynman integral

I){(Gu) exists for A in C% ,,, . and

I{(G.) (3.4)

oo 'l SR
>y ded s
(]1!"‘%!

m=0 qo+-+qgp=m

(BS) - A

9001, T h 41
THEOREM 3.1. Under the assumptions and notions in the above,
we have

It tirpi=q0

qo0
*C(qu(]ls SRR/ IS PO ~.ilz+1314)dHll(Si)-
=1

H{(G.) (3.5)
:C/\/(U"Th ) exp[wh eu(Th )]I,{(G,.h )

+ (BS) - / Cvz\/(u—s} © 9'11(5) Y I((Gs) dﬂ(S).

Proof. From ecuality (3.4),
I{(Gy) (3.6)
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Dagisn. bt 1=1
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m=0 qo=1 g1+ -+gp=m-—gqo Nt A in=q0

x(BS)~/
A

g0
L(u) (1H ((34)
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m’

@ ps) - / Csu=r) © Buls) 0 ( 2 2

1’—Oq—1

n g 9o

w Sw

1 h
oy Wl ey
g1+t ap=m/ —gg ]h+l=0 nt-Fie=qo—Jr41
(BS)—/ dH,L )du (s)

Pas

qO;jly"'vjh-},l i=1
Gh

o o] m wa ’Ll)h
tomme (XX X HE e e

m=0 go=1 g1+ +grn=m—qo

Z (BS)—/ ‘C(Th—)dlq:—o[/‘('gi)>

Jit+in=qo Bggijr. o in.0

3
()C/\/(u Th) oe\p(wh 7-h))OI GTI.)
+(BS)—/ Cfamrn) 0 B(s) 0 I{(G4) dps).

Step (1) and (3) are clear. Putting m' = m—1 and ¢; = qo—1, Step (2)
follows from the elementary calculus. Therefore, the proof is complete.

REMARK. In the above Theorem, if we let 57 be Lebesgue measure,
the equation (3.5) and the equation (5.9) in Theorem 5.1 of {7, p126]
are essentially the same.
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