• 제목/요약/키워드: operator equation

Search Result 377, Processing Time 0.024 seconds

ALGEBRAIC CHARACTERIZATION OF GENERIC STRONGLY SEMI-REGULAR RATIONAL PH PLANE CURVES

  • KIM GWANG-IL
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.241-251
    • /
    • 2005
  • In this paper, we introduce a new algebraic method to characterize rational PH plane curves. And using this method, we study the algebraic characterization of generic strongly regular rational plane PH curves expressed in the complex formalism which is introduced by R.T. Farouki. We prove that generic strongly semi-regular rational PH plane curves are completely characterized by solving a simple functional equation H(f, g) = $h^2$ where h is a complex polynomial and H is a bi-linear operator defined by H(f, g) = f'g - fg' for complex polynomials f,g.

OSCILLATIONS FOR EVEN-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhou, Zhan;Yu, Jianshe;Lei, Guanglong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.833-842
    • /
    • 2000
  • Consider the even-order neutral difference equation (*) ${\delta}^m(x_n{-}p_ng(x_{n-k}))-q_nh(x_{n-1})=0$, n=0,1,2,... where $\Delta$ is the forward difference operator, m is even, ${-p_n},{q_n}$ are sequences of nonnegative real numbers, k, l are nonnegative integers, g(x), h(x) ${\in}$ C(R, R) with xg(x) > 0 for $x\;{\neq}\;0$. In this paper, we obtain some linearized oscillation theorems of (*) for $p_n\;{\in}\;(-{\infty},0)$ which are discrete results of the open problem by Gyori and Ladas.

EXISTENCE RESULTS FOR POSITIVE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SECOND ORDER DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yu-Ji
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.135-163
    • /
    • 2010
  • Motivated by [Science in China (Ser. A Mathematics) 36 (2006), no. 7, 721?732], this article deals with the following discrete type BVP $\LARGE\left\{{{\;{\Delta}[{\phi}({\Delta}x(n))]\;+\;f(n,\;x(n\;+\;1),{\Delta}x(n),{\Delta}x(n + 1))\;=\;0,\;n\;{\in}\;[0,N],}}\\{\;{x(0)-{\sum}^m_{i=1}{\alpha}_ix(n_i) = A,}}\\{\;{x(N+2)-\;{\sum}^m_{i=1}{\beta}_ix(n_i)\;=\;B.}}\right.$ The sufficient conditions to guarantee the existence of at least three positive solutions of the above multi-point boundary value problem are established by using a new fixed point theorem obtained in [5]. An example is presented to illustrate the main result. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multifixed-point theorems can be extended to treat nonhomogeneous BVPs. The emphasis is put on the nonlinear term f involved with the first order delta operator ${\Delta}$x(n).

A NOTE ON ZEROS OF BOUNDED HOLOMORPHIC FUNCTIONS IN WEAKLY PSEUDOCONVEX DOMAINS IN ℂ2

  • Ha, Ly Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.993-1002
    • /
    • 2017
  • Let ${\Omega}$ be a bounded, uniformly totally pseudoconvex domain in ${\mathbb{C}}^2$ with the smooth boundary b${\Omega}$. Assuming that ${\Omega}$ satisfies the negative ${\bar{\partial}}$ property. Let M be a positive, finite area divisor of ${\Omega}$. In this paper, we will prove that: if ${\Omega}$ admits a maximal type F and the ${\check{C}}eck$ cohomology class of the second order vanishes in ${\Omega}$, there is a bounded holomorphic function in ${\Omega}$ such that its zero set is M. The proof is based on the method given by Shaw [27].

SOLUTIONS OF HIGHER ORDER INHOMOGENEOUS PERIODIC EVOLUTIONARY PROCESS

  • Kim, Dohan;Miyazaki, Rinko;Naito, Toshiki;Shin, Jong Son
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1853-1878
    • /
    • 2017
  • Let $\{U(t,s)\}_{t{\geq}s}$ be a periodic evolutionary process with period ${\tau}$ > 0 on a Banach space X. Also, let L be the generator of the evolution semigroup associated with $\{U(t,s)\}_{t{\geq}s}$ on the phase space $P_{\tau}(X)$ of all ${\tau}$-periodic continuous X-valued functions. Some kind of variation-of-constants formula for the solution u of the equation $({\alpha}I-L)^nu=f$ will be given together with the conditions on $f{\in}P_{\tau}(X)$ for the existence of coefficients in the formula involving the monodromy operator $U(0,-{\tau})$. Also, examples of ODEs and PDEs are presented as its application.

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

The Study on Yaw Motion of Crane Driving Mechanism (크레인 구동부의 Yaw Motion에 관한 연구)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.336-336
    • /
    • 2000
  • This paper studied on the yaw motion of the gantry crane which is used for the automated container terminal. Though several problems are occurred in driving of gantry crane, they are solved by the motion by the operator. But if the gantry crane is unmanned, it is automatically controlled without any human operation. There are two types, cone and flat typo in driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. To bring a solution to these problems, the dynamic equation of the gantry crane driving mechanism is derived and it used PD(Proportional-Derivative) controller to control the lateral vibration. The simulation result of the driving mechanism using the Runge-Kutta method is presented in this paper.

  • PDF

A New Approach for the Derivation of a Discrete Approximation Formula on Uniform Grid for Harmonic Functions

  • Kim, Philsu;Choi, Hyun Jung;Ahn, Soyoung
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.529-548
    • /
    • 2007
  • The purpose of this article is to find a relation between the finite difference method and the boundary element method, and propose a new approach deriving a discrete approximation formula as like that of the finite difference method for harmonic functions. We develop a discrete approximation formula on a uniform grid based on the boundary integral formulations. We consider three different boundary integral formulations and derive one discrete approximation formula on the uniform grid for the harmonic function. We show that the proposed discrete approximation formula has the same computational molecules with that of the finite difference formula for the Laplace operator ${\nabla}^2$.

  • PDF

Calculations of Polarizabilities by Integral Hellmann-Feynman Theorem (Integral Hellmann-Feynman Theorem에 의한 Polarizability의 평가)

  • Kim, Ho-Jing;Cho, Ung-In
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.127-131
    • /
    • 1970
  • The variational approach for the direct evaluation of the energy difference ${\Delta}$E is studied. The method is based on the differential equation corresponding to the integral Hellmann-Feynman formula. The ${\Delta}$E is given by the expectation value of the Hermitian operator which does not involve the 1/$r_{ij}$ term. Because of its variational nature of the method, the coupling problem of the differential equations which are encountered in perturbation treatment does not occur. The method is applied to the evaluation of the electric polarizabilities of the Helium isoelectronic series atoms. The result is in good agreement with the experiment. The method is compared with the recent works of Karplus et al.

  • PDF

A Study on the lon Beam Control of Cyclotron using Intelligent Control (지능형 제어기법을 이용한 싸이클로트론의 이온 빔 제어에 관한 연구)

  • Kim, Yu-Seok;Jo, Yeong-Ho;Chae, Jong-Seo;Gwon, Gi-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.10-17
    • /
    • 2000
  • Recently, as the field of cyclotron application is to be wider, to inject the beam whree the user want to is getting more important. But since it is not the easy way to describe the model equation of cyclotron, it could be operated by only operator's experiences. In this paper, we suggest the cyclotron controller using the fuzzy logic and the genetic algorithm. The proposed controller was verified in useful by applying to the cyclotron's beam line. In the experiment the measured results were obtained by VXIbus and the control algorithm was performed by LabWindows/CVI.

  • PDF