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SOLUTIONS OF HIGHER ORDER INHOMOGENEOUS

PERIODIC EVOLUTIONARY PROCESS

Dohan Kim, Rinko Miyazaki, Toshiki Naito, and Jong Son Shin

Abstract. Let {U(t, s)}t≥s be a periodic evolutionary process with pe-
riod τ > 0 on a Banach space X. Also, let L be the generator of the evo-

lution semigroup associated with {U(t, s)}t≥s on the phase space Pτ (X)

of all τ -periodic continuous X-valued functions. Some kind of variation-
of-constants formula for the solution u of the equation (αI − L)nu = f

will be given together with the conditions on f ∈ Pτ (X) for the existence

of coefficients in the formula involving the monodromy operator U(0,−τ).
Also, examples of ODEs and PDEs are presented as its application.

1. Introduction

Let X be a Banach space and Pτ (X) the phase space of all τ -periodic contin-
uous X-valued functions. Let {U(t, s)}t≥s be a periodic evolutionary process
with period τ > 0 on X. We denote by L the generator of the evolution
semigroup {Th}h≥0 (see Section 2, and [3], [6], [10], etc.) on the phase space
Pτ (X) associated with {U(t, s)}t≥s on X. The representation of the solution
u ∈ Pτ (X) to the homogeneous linear equation (αI−L)nu = 0 is exactly given
in [9].

The purpose of this paper is to solve the inhomogeneous linear equation for
u ∈ Pτ (X) of the form

(1.1) (αI − L)nu = f,

where f ∈ Pτ (X). In other words, we obtain the range (αI−L)n(Pτ (X)). Set-
ting Uα(t, s) = e−α(t−s)U(t, s) and Vα(0) = Uα(τ, 0), we show that a solution
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u ∈ D(Ln) ⊂ Pτ (X) of the equation (1.1) is represented as

(1.2) u(t) = Uα(t, 0)

n−1∑
j=0

tj

j!
wj +

∫ t

0

(t− s)n−1

(n− 1)!
Uα(t, s)f(s)ds, t ≥ 0

with a solution [w0, w1, . . . , wn−1] of the equations

(I − Vα(0))wn−k=Vα(0)

k−1∑
j=1

τ j

j!
wn−k+j+

∫ τ

0

(τ − s)k−1

(k − 1)!
Uα(τ, s)f(s)ds(1.3)

(k = 1, 2, . . . , n)

(see Theorem 2.6) in Section 2. This result is proved by transforming the
equation (1.1) to the equivalent system of the first order equations. The repre-
sentation (1.2) is regarded as the variation-of-constants formula to the equation
(1.1). The equation (1.3) is called the coefficient equation for the solution u(t).
In Section 3 we show that w1, . . . , wn−1 in the solution (1.2) are determined by
a solution w0 satisfying the equation

(I − Vα(0))nw0 =

n−1∑
i=0

(−1)ii!(I − Vα(0))n−1−i

×
n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!

∫ τ

0

(τ − s)n−j−1

(n− j − 1)!
Uα(τ, s)f(s)ds,

where
{
a
b

}
stands for the Stirling number of the second kind (see Theorem

3.4). In this manner we obtain a representation of solutions to the equation
(1.1) by substituting these values w1, . . . , wn−1 in (1.2) (see Theorem 3.5). A
necessary and sufficient condition (see Corollary 3.6) for f to be in the range
of (αI − L)n will be derived from the procedure of solving the equation (1.1).
However, its condition is obtained by using a linear operator of a complicated
form. So, we discuss sufficient conditions (see Corollaries 3.7 and 3.8) on f ,
which is simpler than the original condition. In addition, we shall illustrate
the above-mentioned results by the simple examples for ODEs and PDEs in
Section 4.

This paper is a sequel to the previous work [9] in which only the solutions
of the homogeneous equation (αI − L)nu = 0 are obtained. In the case f = 0,
the formulae (1.2) and (1.3) are reduced to the corresponding formulae in that
previous results. The original motivation to solve the homogeneous equation
(αI − L)nu = 0 is to show that, if 1 is a normal eigenvalue of V (0), then 0 is
also a normal eigenvalue of L. This result leads to the existence of the right
inverse of −L which is employed to discuss the perturbation of the degenerate
periodic solution of the nonlinear oscillation problem dx/dt = A(t)x+εf(t, x, ε)
(see [8] for the detail).
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2. Coefficient equation for the solution u(t)

In this section we give conditions on the existence of solutions and a rep-
resentation of solutions of the equation (αI − L)nu = f ∈ Pτ (X). A family
of bounded linear operators {U(t, s)}t≥s, (t, s ∈ R) from a Banach space X to
itself is called τ -periodic (strongly continuous) evolutionary process ([3], [6],
etc.) if the following conditions are satisfied

(1) U(t, t) = I for all t ∈ R, I the identity operator.
(2) U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r,
(3) The map (t, s) 7→ U(t, s)x is continuous for every fixed x ∈ X,
(4) U(t+ τ, s+ τ) = U(t, s) for all t ≥ s,
(5) ‖U(t, s)‖ ≤ Mwe

w(t−s) for some Mw ≥ 1 and w ∈ R which are inde-
pendent of t ≥ s.

The family of operators defined by

V (t) = U(t, t− τ), t ∈ R,

is called monodromy operator, period map, or Poincaré map ([6]). Associated
with {U(t, s)}t≥s, we can define a C0-semigroup {Th}h≥0 on Pτ (X) by

(Thu)(t) = U(t, t− h)u(t− h) for u ∈ Pτ (X), t ∈ R, h ≥ 0.

Let L be its generator. Then u ∈ D(L) and −Lu = f if and only if u, f ∈ Pτ (X)
and

u(t) = U(t, s)u(s) +

∫ t

s

U(t, r)f(r)dr

for any t, s ∈ R with t ≥ s, that is, u is a mild solution.
For α ∈ C, we define the bounded operators Uα(t, s) by

(2.1) Uα(t, s) = e−α(t−s)U(t, s) (t ≥ s),

and Vα(t) by

Vα(t) = Uα(t, t− τ).

Note that U0(t, s) = U(t, s) and V0(t) = V (t). Then it is easy to verify that
{Uα(t, s)}t≥s is a τ -periodic evolutionary process. Denote by Lα the generator
of the evolution semigroup {Thα}h≥0 defined by

(Thαu)(t) = Uα(t, t− h)u(t− h), u ∈ Pτ (X), t ∈ R, h ≥ 0.

Then D(Lα) = D(L) and Lα = L− αI, cf. [8, Lemma 3.9].
Now we introduce an integral operator Mα defined by

(Mαf)(t) =

∫ t

0

Uα(t, s)f(s)ds.

The following result is found in several literatures, e.g., [4], [9, Lemma 2.1
and Corollary 2.3], etc.
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Lemma 2.1. Let f ∈ Pτ (X). Then the solution u ∈ D(L) ⊂ Pτ (X) of the
equation

(2.2) (αI − L)u = f

is given by

(2.3) u(t) = Uα(t, 0)w +Mαf(t), t ≥ 0

with a solution w of the equation

(2.4) (I − Vα(0))w = Mαf(τ).

If f ∈ Pτ (X) in the equation (2.2) is given by f(t) = Uα(t, 0)g(t), t ≥ 0, by
a continuous function g : [0,∞)→ X, then the equation (2.3) is reduced to the
equation

u(t) = Uα(t, 0)w + Uα(t, 0)

∫ t

0

g(r)dr, t ≥ 0,

and the equation (2.4) to the equation

(2.5) (I − Vα(0))w = Vα(0)

∫ τ

0

g(r)dr.

The following lemma is almost trivial.

Lemma 2.2. If u is a solution of (1.1), then [u0, u1, . . . , un−1] defined as uj =
(αI − L)ju, j = 0, . . . , n− 1 is a solution of the system

(2.6)


(αI − L)u0 = u1
(αI − L)u1 = u2
· · ·
(αI − L)un−2 = un−1
(αI − L)un−1 = f

and vice versa.

To solve the system, we prepare the following lemma. For simplicity, we use
the notation Mk

αf(t) instead of (Mk
αf)(t), k = 0, 1, . . ., which is defined by

Mk
αf(t) = Mα(Mk−1

α f)(t) =

∫ t

0

Uα(t, s)(Mk−1
α f)(s)ds, k ≥ 1,

M1
αf(t) = Mαf(t), and M0

αf(t) = f(t).

Lemma 2.3.

(2.7) Mk
αf(t) =

∫ t

0

(t− s)k−1

(k − 1)!
Uα(t, s)f(s)ds (k = 1, 2, . . .).

Proof. We can prove this lemma by induction on k = 1, 2, . . . . �

We promise hereafter that

(2.8)

i∑
k=i+1

ak = 0, ak ∈ X.
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Proposition 2.4. The solution [u0, u1, . . . , un−1] of the system (2.6) is given
by

(2.9) un−k(t) = Uα(t, 0)

k−1∑
j=0

tj

j!
wn−k+j +Mk

αf(t) for t ≥ 0 (k = 1, 2, . . . , n)

with a solution [w0, w1, . . . , wn−1] of

(2.10)
(I − Vα(0))wn−k = Vα(0)

k−1∑
j=1

τ j

j!
wn−k+j +Mk

αf(τ)

(k = 1, 2, . . . , n).

Proof. Consider the system

EL(k) :


(αI − L)un−k = un−k+1

· · ·
(αI − L)un−2 = un−1
(αI − L)un−1 = f

and the system

EV (k) : (I − Vα(0))wn−i = Vα(0)

i−1∑
j=1

τ j

j!
wn−i+j +M i

αf(τ) (i = 1, 2, . . . , k)

for all k, 1 ≤ k ≤ n. By induction we can prove that the following statement
ST (k) holds for all k, 1 ≤ k ≤ n:
ST (k) : The solution [un−k, un−k+1, . . . , un−1] of EL(k) is given by

(2.11) un−i(t) = Uα(t, 0)

i−1∑
j=0

tj

j!
wn−i+j +M i

αf(t), t ≥ 0 (i = 1, . . . , k)

with a solution [wn−k, wn−k+1, . . . , wn−1] of EV (k). Proposition 2.4 follows
from this result, and we omit the details since the argument is standard. �

Corollary 2.5. The system (2.6) has a solution [u0, . . . , un−1] if and only if
the system (2.10) has a solution [w0, . . . , wn−1].

Combining Lemma 2.2 and Proposition 2.4, we obtain the following result.

Theorem 2.6. The solution u of the equation (1.1) is represented as

(2.12) u(t) = Uα(t, 0)

n−1∑
j=0

tj

j!
wj +

∫ t

0

(t− r)n−1

(n− 1)!
Uα(t, r)f(r)dr, t ≥ 0

with a solution [w0, w1, . . . , wn−1] of the equations (2.10).
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3. Representation of solutions to the equation (1.1)

From Theorem 2.6 we will solve the equation (2.10) to obtain the solution
(2.12) of the equation (1.1). As a result, any solution [w0, w1, . . . , wn−1] of the
equation (2.10) will be represented by w0 such that

(I − Vα(0))nw0 =

n−1∑
i=0

(−1)ii!(I − Vα(0))n−1−i
n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!
Mn−j
α f(τ).

To deal with the equation (2.10), we introduce the following notations:

J =


0 1 0 · · · · · · 0
0 0 1 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · · · · 0 1 0
0 · · · · · · 0 0 1
0 · · · · · · 0 0 0

 ,

W =


w0

w1

...
wn−2
wn−1

 and Mαf(τ) =


Mn
αf(τ)

Mn−1
α f(τ)

...
M2
αf(τ)

M1
αf(τ)

 .
Then

eτJ =



1 τ τ2

2! · · · τn−3

(n−3)!
τn−2

(n−2)!
τn−1

(n−1)!

0 1 τ · · · τn−4

(n−4)!
τn−3

(n−3)!
τn−2

(n−2)!

0 0 1 · · · τn−5

(n−5)!
τn−4

(n−4)!
τn−3

(n−3)!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · 1 τ τ2

2!
0 0 0 · · · 0 1 τ
0 0 0 · · · 0 0 1


.

If H : X → X is a linear operator, we write

(3.1) [H]W =


Hw0

Hw1

...
Hwn−1

 for W =


w0

w1

...
wn−1

 ,
that is, [H]W = diagonal(H,H, . . . ,H)W by the standard notation.

By these notations, the system (2.10) is rewritten as

(3.2) [(I − Vα(0))]W = (eτJ − I)[Vα(0)]W + Mαf(τ).

This is equivalent to the system W = eτJ [Vα(0)]W + Mαf(τ), that is,

[Vα(0)]W = e−τJW − e−τJMαf(τ).
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Then (3.2) becomes

(3.3) [(I − Vα(0))]W = (I − e−τJ)W + e−τJMαf(τ),

in which

I − e−τJ =



0 τ − (−τ)2
2! · · · − (−τ)n−3

(n−3)! − (−τ)n−2

(n−2)! − (−τ)n−1

(n−1)!

0 0 τ · · · − (−τ)n−4

(n−4)! − (−τ)n−3

(n−3)! − (−τ)n−2

(n−2)!

0 0 0 · · · − (−τ)n−5

(n−5)! − (−τ)n−4

(n−4)! − (−τ)n−3

(n−3)!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0 τ − (−τ)2
2!

0 0 0 · · · 0 0 τ
0 0 0 · · · 0 0 0


.

To solve the system (2.10), we need the Stirling numbers. We introduce the
factorial function (x)k of degree k defined by

(x)k = x(x− 1) · · · (x− k + 1) for k ≥ 1,

and by (x)0 = 1. Then (x)0, (x)1, . . . , (x)n is a basis of the space of polynomials
of degree ≤ n. The Stirling numbers are defined as coefficients in the transform
between this basis and the basis 1, x, . . . , xn as follows. The Stirling numbers
of the first kind, denoted by

[
n
k

]
for k = 0, . . . , n, are defined as

(3.4) (x)n =

n∑
k=0

[
n

k

]
xk,

and the Stirling numbers of the second kind, denoted by
{
n
k

}
for k = 0, . . . , n,

are defined as

xn =

n∑
k=0

{
n

k

}
(x)k.

The following formulae are well known.

(3.5)

n∑
i=k

{
n

i

}[
i

k

]
= δnk,

n∑
i=k

[
n

i

]{
i

k

}
= δnk,

(3.6)

{
n+ 1

m

}
=

{
n

m− 1

}
+m

{
n

m

}
,

(3.7)

[
n

0

]
=

{
n

0

}
= 0 (n ≥ 1).

The following lemma is found in [1, Sec. 2.1, Chap. 2].

Lemma 3.1.
(ez − 1)k

k!
=

∞∑
n=k

{
n

k

}
zn

n!
.

The following lemma is prepared in [9, Lemmas 4.1 and 4.3].
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Lemma 3.2.

(3.8)

`−1∑
k=m

[
k

m

]
(k + 1)

{
`

k + 1

}
=
∑̀
k=m

[
k

m

]{
`+ 1

k + 1

}
=

(
`

m

)
(0 ≤ m ≤ `).

Also, the formula (3.5) yields the inversion formula of (3.8).

Corollary 3.3.

(3.9)

{
`+ 1

i+ 1

}
=
∑̀
m=i

(
`

m

){
m

i

}
(0 ≤ i ≤ `).

Proof. By Lemma 3.2 we have∑̀
m=i

{
m

i

}(
`

m

)
=
∑̀
m=i

{
m

i

} ∑̀
k=m

[
k

m

]{
`+ 1

k + 1

}
.

The right hand side becomes∑̀
m=i

{
m

i

} ∑̀
k=m

[
k

m

]{
`+ 1

k + 1

}
=
∑̀
k=i

(
k∑

m=i

[
k

m

]{
m

i

}){
`+ 1

k + 1

}

=
∑̀
k=i

δki

{
`+ 1

k + 1

}
=

{
`+ 1

i+ 1

}
,

which proves the corollary. �

The following result is a key lemma in this paper. It gives a necessary and
sufficient condition in order that [w0, w1, . . . , wn−1] is a solution of the equation
(2.10), or (3.3). To describe the lemma, we introduce a notation such that

(3.10) Hα,n(k)f =

k−1∑
i=0

(−1)ii!(I − Vα(0))k−1−i
n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!
Mn−j
α f(τ)

for k = 1, . . . , n.

Theorem 3.4. [w0, w1, . . . , wn−1] is a solution of the equation (2.10) if and
only if

(3.11) (I − Vα(0))nw0 = Hα,n(n)f

and
(3.12)

wm =
m!

(−τ)m

n−1∑
k=m

[
k

m

]
(−1)k

k!

[
(I − Vα(0))kw0 −Hα,n(k)f

]
(m = 1, . . . , n−1).

Proof. We will solve the equation (3.3). For the simplicity of notation we set
I − Vα(0) = A, I − e−τJ = B and

e−τJMαf(τ) = G(τ) = t[g0(τ), g1(τ), . . . , gn−1(τ)],



INHOMOGENEOUS PERIODIC EVOLUTIONARY PROCESS 1861

that is,

g`(τ) =

n−1∑
j=`

(−τ)j−`

(j − `)!
Mn−j
α f(τ) (0 ≤ ` ≤ n− 1).

Then, the equation (3.3) is rewritten as

[A]W = BW +G(τ).

Denote by bij the (i, j) component of the n × n matrix B temporary. Then
for any V = t[v1, . . . , vn] ∈ Xn, the i-th component of [A]BV is equal to
A
∑n
j=1 bijvj =

∑n
j=1 bijAvj , that is, we can write [A](BV ) = B[A]V . Thus

[A2]W = [A][A]W = [A](BW +G(τ)) = B[A]W + [A]G(τ)

= B(BW +G(τ)) + [A]G(τ) = B2W +BG(τ) + [A]G(τ).

In the same manner, we have the following result by induction:

[Ak]W = BkW +

(
k−1∑
i=0

[Ak−1−i]Bi

)
G(τ) (1 ≤ k ≤ n).

Since J` = 0 for ` ≥ n, it follows from Lemma 3.1 that

Bi = (I − e−τJ)i = (−1)ii!

n−1∑
`=i

{
`

i

}
1

`!
(−τJ)` (1 ≤ i ≤ n).

Thus

[Ak]W = (−1)kk!

n−1∑
`=k

{
`

k

}
1

`!
(−τJ)`W

+

k−1∑
i=0

(−1)ii![Ak−1−i]

n−1∑
`=i

{
`

i

}
1

`!
(−τJ)`G(τ) (1 ≤ k ≤ n).

We observe the first component of this vector equation. Since the first
component of the vector J`W is w`, it follows that

Akw0 = (−1)kk!

n−1∑
`=k

{
`

k

}
(−τ)`

`!
w` + v(k),

where

v(k) =

k−1∑
i=0

(−1)ii!Ak−1−i
n−1∑
`=i

{
`

i

}
(−τ)`

`!
g`(τ).

From the definition of g`(τ) we have

n−1∑
`=i

{
`

i

}
(−τ)`

`!
g`(τ) =

n−1∑
`=i

{
`

i

}
(−τ)`

`!

n−1∑
j=`

(−τ)j−`

(j − `)!
Mn−j
α f(τ)
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=

n−1∑
j=i

j∑
`=i

(
j

`

){
`

i

}
(−τ)j

j!
Mn−j
α f(τ)

=

n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!
Mn−j
α f(τ)

by Corollary 3.3. Hence v(k) = Hα,n(k)f which is defined by (3.10), so that

(3.13) Akw0 = (−1)kk!

n−1∑
`=k

{
`

k

}
(−τ)`

`!
w` +Hα,n(k)f (k = 1, . . . , n).

We separate this relation into the two parts according to the value of k as
follows.

(3.14) Anw0 = Hα,n(n)f,

(3.15)
(−1)k

k!
(Akw0 −Hα,n(k)f) =

n−1∑
`=k

{
`

k

}
(−τ)`

`!
w` (k = 1, . . . , n− 1).

Obviously, (3.14) is (3.11). From (3.15) and the first equation in (3.5), it follows
that

n−1∑
k=m

[
k

m

]
(−1)k

k!
(Akw0 −Hα,n(k)f) =

n−1∑
k=m

[
k

m

] n−1∑
`=k

{
`

k

}
(−τ)`

`!
w`

=

n−1∑
`=m

∑̀
k=m

[
k

m

]{
`

k

}
(−τ)`

`!
w`

=
(−τ)m

m!
wm (m = 1, . . . , n− 1)

that is,

(3.16)
(−τ)m

m!
wm =

n−1∑
k=m

[
k

m

]
(−1)k

k!
(Akw0 −Hα,n(k)f),

so that (3.12) holds.
Conversely, assume that w0 satisfies (3.11) or (3.14) and that w1, w2, . . .,

wn−1 are defined as in (3.12) by this w0. Multiply the both side of (3.16) by{
m
`

}
, and take the sum for m from ` up to n. Then we obtain (3.15) by using

the second formula in (3.5). Thus w0, w1, w2, . . . , wn−1 satisfy (3.13).
We will check that t[w0, w1, . . . , wn−1] satisfies the equation (3.3). Since{

`
1

}
= 1 for ` ≥ 1, the equation (3.13) for k = 1 or (3.11) becomes

Aw0 = −
n−1∑
`=1

{
`

1

}
(−τ)`

`!
w` +

n−1∑
j=0

{
j + 1

1

}
(−τ)j

j!
Mn−j
α f(τ)
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= −
n−1∑
`=1

(−τ)`

`!
w` +

n−1∑
j=0

(−τ)j

j!
Mn−j
α f(τ).

Thus the first components of the both sides in the equation (3.3) are the same.
We will check the components after the second in the equation (3.3). Let

1 ≤ m ≤ n− 1. Multiplying (3.12) or (3.16) by A, we have

(−τ)m

m!
Awm =

n−1∑
k=m

[
k

m

]
(−1)k

k!
(Ak+1w0 −AHα,n(k)f).

From (3.13) and (3.10) it follows that

Ak+1w0 −AHα,n(k)f = (−1)k+1(k + 1)!

n−1∑
`=k+1

{
`

k + 1

}
(−τ)`

`!
w`

+Hα,n(k + 1)f −AHα,n(k)f,

and

Hα,n(k + 1)f −AHα,n(k)f =
k∑
i=0

(−1)ii!Ak−i
n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!
Mn−j
α f(τ)

−
k−1∑
i=0

(−1)ii!Ak−i
n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!
Mn−j
α f(τ)

= (−1)kk!

n−1∑
j=k

{
j + 1

k + 1

}
(−τ)j

j!
Mn−j
α f(τ).

Thus

(−τ)m

m!
Awm =

n−1∑
k=m

[
k

m

]
(−1)k

k!

(
(−1)k+1(k + 1)!

n−1∑
`=k+1

{
`

k + 1

}
(−τ)`

`!
w`

+(−1)kk!

n−1∑
j=k

{
j + 1

k + 1

}
(−τ)j

j!
Mn−j
α f(τ)


= −

n−1∑
`=m+1

(
`−1∑
k=m

[
k

m

]
(k + 1)

{
`

k + 1

})
(−τ)`

`!
w`

+

n−1∑
j=m

j∑
k=m

[
k

m

]{
j + 1

k + 1

}
(−τ)j

j!
Mn−j
α f(τ),

so that, by Lemma 3.2,

Awm = −
n−1∑

`=m+1

(
`−1∑
k=m

[
k

m

]
(k + 1)

{
`

k + 1

})
(−τ)`−mm!

`!
w`
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+

n−1∑
j=m

j∑
k=m

[
k

m

]{
j + 1

k + 1

}
(−τ)j−mm!

j!
Mn−j
α f(τ)

= −
n−1∑

`=m+1

(
`

m

)
(−τ)`−mm!

`!
w` +

n−1∑
j=m

(
j

m

)
(−τ)j−mm!

j!
Mn−j
α f(τ).

Thus we obtain that

Awm = −
n−1∑

`=m+1

(−τ)`−m

(`−m)!
w` +

n−1∑
j=m

(−τ)j−m

(j −m)!
Mn−j
α f(τ) (m = 1, . . . , n− 1).

Thus the equation (3.3) holds: the proof is complete. �

Note that the equality

(t)k =

k∑
j=0

(−1)k+j
[
k

j

]
tj , t ≥ 0(3.17)

is derived from (3.4), where (t)k = t(t+ 1)(t+ 2) · · · (t+ k − 1), k ≥ 1, (t)0 =
1. Summing up Theorem 2.6, Theorem 3.4 and (3.17) and using the same
argument as in the proof of [9, Theorem 2], we arrive at the following result.

Theorem 3.5. Assume that a solution w0 of the equation (3.11) exists. Then
the solution u of the equation (1.1) with u(0) = w0 is represented as

u(t) = Uα(t, 0)

n−1∑
k=0

(
t

τ

)
k

1

k!

[
(I − Vα(0))kw0

−
k−1∑
i=0

(−1)ii!(I − Vα(0))k−1−i
n−1∑
j=i

{
j + 1

i+ 1

}
(−τ)j

j!
Mn−j
α f(τ)


+Mn

αf(t), t ≥ 0.(3.18)

Corollary 3.6. The equation (1.1) has a solution if and only if the equation
(3.11) has a solution, that is, Hα,n(n)f ∈ R((I − Vα(0))n).

Finally, we give sufficient conditions on the existence of the solution w0 to
the equation (3.11). Note that for a bounded linear operator A : X → X, one
has R(An+1) ⊂ R(An), n = 0, 1, . . . .

Corollary 3.7. Suppose that

(3.19) Mn−j
α f(τ) ∈ R((I − Vα(0))j+1), j = 0, 1, . . . , n− 1.

Then the equation (1.1) has a solution.

Proof. Suppose that (3.19) holds. Then for j = 0, 1, . . . , n − 1 there exists
xj ∈ X such that Mn−j

α f(τ) = Aj+1xj , so we have

Hα,n(n)f =

n−1∑
j=0

(−τ)j

j!

(
j∑
i=0

(−1)ii!Aj−i
{
j + 1

i+ 1

})
An−1−jAj+1xj
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= An
n−1∑
j=0

(−τ)j

j!

(
j∑
i=0

(−1)ii!Aj−i
{
j + 1

i+ 1

})
xj .

Thus we have the corollary in the above from Corollary 3.6. �

Corollary 3.8. Suppose that

Mn−j
α f(τ) ∈ R((I − Vα(0))n), j = 0, 1, . . . , n− 1.(3.20)

Then the equation (1.1) has a solution.

4. Applications to differential equations

We shall illustrate the above-mentioned results by the simple examples for
ODEs and PDEs. For a closed linear operator B : D(B) ⊂ X → X we denote
by σ(B), σp(B) and σn(B) the spectrum of B, the point spectrum of B and
the set of all normal eigenvalues (see [2] for the definition) of B, respectively.

4.1. An example of ODE

Let us consider 3-dimensional 2π-periodic linear systems

(4.1)

(
d

dt
−A(t)

)
u(t) = f(t),

and

(4.2)

(
d

dt
−A(t)

)(
d

dt
−A(t)

)
u(t) = f(t),

where

A(t) =

 a 0 0
0 sin t 1 + cos t
0 0 sin t

 , u(t) =

 u1(t)
u2(t)
u3(t)

 , f(t) =

 f1(t)
f2(t)
f3(t)

 .
We assume that a ∈ R, a 6= 0, so that e2πa 6= 1. Since A(t) and

∫ t
s
A(r)dr are

commutative, the solution operator U(t, s) of the equation u′(t) = A(t)u(t) is
given by

U(t, s) = exp

(∫ t

s

A(r)dr

)

=

 ea(t−s) 0 0
0 e− cos t+cos s e− cos t+cos s(t+ sin t− s− sin s)
0 0 e− cos t+cos s

 .(4.3)

{U(t, s)}t≥s is a 2π–periodic evolutionary process on R3. Clearly,

U(t, 0) =

 eat 0 0
0 e1−cos t e1−cos t(t+ sin t)
0 0 e1−cos t


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and hence, the monodromy operator V (0) is given by

(4.4) V (0) =

 e2πa 0 0
0 1 2π
0 0 1

 .
Since e2πa 6= 0, σp(V (0)) = {e2πa, 1} and
(4.5)

I − V (0) =

 1− e2πa 0 0
0 0 −2π
0 0 0

 , (I − V (0))2 =

 (1− e2πa)2 0 0
0 0 0
0 0 0

 .
Thus the ascent and the descent of I − V (0) are 2.

Let L be the generator of the evolution semigroup {Th}h≥0 on P2π(R3)
associated with this evolutionary process {U(t, s)}t≥s. Then the condition
−Lu = f is equivalent that

u(t) = U(t, s)u(s) +

∫ t

s

U(t, r)f(r)dr

for any t, s with t ≥ s. In this case, this means that u ∈ P (1)
2π (R3) and u′(t) =

A(t)u(t) + f(t), that is, u′(t)− A(t)u(t) = f(t). Namely, the equation (4.1) is
equivalent to the equation −Lu = f ; and the equation (4.2) is equivalent to
the equation L2u = f .

For w ∈ R3, wj , j = 1, 2, 3, denotes the j-th component of w. For example,
[Mk

0 f(2π)]j denotes the j-th component of Mk
0 f(2π).

To state the propositions, we compute M0f(t), M0f(2π), M2
0 f(t) and

M2
0 f(2π) in advance as follows:

M0f(t) =


∫ t
0
ea(t−s)f1(s)ds∫ t

0
e− cos t+cos s(f2(s)+t+sin t−s−sin s)f3(s))ds∫ t

0
e− cos t+cos sf3(s)ds

 ,
M2

0 f(t) =


∫ t
0
(t− s)ea(t−s)f1(s)ds∫ t

0
(t− s)e− cos t+cos s(f2(s)+(t+sin t−s−sin s)f3(s))ds∫ t

0
(t− s)e− cos t+cos sf3(s)ds

 ,
M0f(2π) =


∫ 2π

0
ea(2π−s)f1(s)ds∫ 2π

0
e−1+cos s(f2(s)+(2π−s−sin s)f3(s))ds∫ 2π

0
e−1+cos sf3(s)ds

 ,(4.6)

M2
0 f(2π) =


∫ 2π

0
(2π − s)ea(2π−s)f1(s)ds∫ 2π

0
(2π − s)e−1+cos s(f2(s)+(2π−s−sin s)f3(s))ds∫ 2π

0
(2π − s)e−1+cos sf3(s)ds

 .
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Proposition 4.1. Let L be the generator of the evolution semigroup {Th}h≥0
on the space P2π(R3) associated with {U(t, s)}t≥s given by (4.3). Then

f ∈ R(−L)⇐⇒ [M0f(2π)]3 = 0,(4.7)

f ∈ R(L2)⇐⇒ [M0f(2π)]3 = 0 and [M2
0 f(2π)]3 = [M0f(2π)]2(4.8)

⇐⇒ f ∈ R((−L)3),(4.9)

and the descent of −L is 2, that is,

R(−L) ) R((−L)2) = R((−L)3).

In fact,

f ∈ R(−L)⇐⇒
∫ 2π

0

ecos sf3(s)ds = 0,(4.10)

f ∈ R((−L)2) = R((−L)3)⇐⇒

{ ∫ 2π

0
ecos sf3(s)ds = 0∫ 2π

0
ecos s(f2(s)− sin sf3(s))ds = 0.

(4.11)

Proof. From Corollary 3.6, f ∈ R((−L)n) if and only if H0,n(n)f ∈ R((I −
V (0))n) for n = 1, 2, . . .. Since I −V (0) and (I −V (0))2 are given as (4.5) and

(I − V (0))3 =

 (1− e2πa)3 0 0
0 0 0
0 0 0

 ,
we have

H0,1(1)f ∈ R(I − V (0))⇐⇒ [H0,1(1)f ]3 = 0,(4.12)

H0,2(2)f ∈ R((I − V (0))2)⇐⇒ [H0,2(2)f ]j = 0 (j = 2, 3),(4.13)

H0,3(3)f ∈ R((I − V (0))3)⇐⇒ [H0,3(3)f ]j = 0 (j = 2, 3).(4.14)

By the formula of Hα,n(k) given by (3.10), we have

(4.15) H0,1(1)f = M0f(2π),

(4.16) H0,2(2)f = AM2
0 f(2π) + (−2π)(A− I)M0f(2π),

H0,3(3)f =

2∑
j=0

(−2π)j

j!

(
j∑
i=0

(−1)ii!Aj−i
{
j + 1

i+ 1

})
A2−jM3−j

0 f(2π)

= A2M3
0 f(2π) + (−2π)(A− I)AM2

0 f(2π)

+
(2π)2

2!

(
A2 − 3A+ 2I

)
M0f(2π),(4.17)

where A = I − V (0).
At first, the equation (4.15) implies that

[H0,1(1)f ]3 = [M0f(2π)]3.
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Thus the assertion (4.12) is rewritten as

H0,1(1)f ∈ R(I − V (0))⇐⇒ [M0f(2π)]3 = 0.

The j-th component [H0,2(2)f ]j is given by

[H0,2(2)f ]j = [AM2
0 f(2π)]j + 2π[V (0)M0f(2π)]j .

Since the third row of A = I − V (0) is [0, 0, 0], we obtain that

[H0,2(2)f ]3 = 2π[V (0)M0f(2π)]3 = 2π[M0f(2π)]3.

In view of I − V (0) and V (0), we have

[H0,2(2)f ]2 = −2π[M2
0 f(2π)]3 + 2π ([M0f(2π)]2 + 2π[M0f(2π)]3) .

Thus the assertion (4.13) is rewritten as

H0,2(2)f ∈ R((I − V (0))2)

⇐⇒ [M0f(2π)]3 = 0 and [M2
0 f(2π)]3 = [M0f(2π)]2.

To obtain [H0,3(3)f ]j , j = 2, 3, we observe that the second row and the third
row of A2, A3 are [0, 0, 0]. Thus, for j = 2, 3,

[H0,3(3)f ]j = 2π[AM2
0 f(2π)]j + 2π2[(−3A+ 2I)M0f(2π)]j

= 2π[AM2
0 f(2π)]j + 2π2[(3V (0)− I)M0f(2π)]j .

In case j = 3, we obtain

[H0,3(3)f ]3 = 2π2[(3V (0)− I)M0f(2π)]3

= 2π2 × 2× [M0f(2π)]3 = 4π2[M0f(2π)]3,

and in case j = 2,

[H0,3(3)f ]2 = (2π)(−2π)[M2
0 f(2π)]3 + 2π2[(3V (0)− I)M0f(2π)]2

= (2π)(−2π)[M2
0 f(2π)]3 + 2π2 (2[M0f(2π)]2 + 6π[M0f(2π)]3)

= 4π2
(
−[M2

0 f(2π)]3 + [M0f(2π)]2
)

+ 12π3[M0f(2π)]3.

Thus the assertion (4.13) is rewritten as

H0,3(3)f ∈ R((I − V (0))3)

⇐⇒ [M0f(2π)]3 = 0 and [M2
0 f(2π)]3 = [M0f(2π)]2.

These results up to this point are summarized as in (4.7), (4.8) and (4.9).
In particular, −L has the descent ≤ 2.

In view of (4.6), we obtain

(4.18) [M0f(2π)]3 = 0⇐⇒
∫ 2π

0

e−1+cos sf3(s)ds = 0.

This assertion together with (4.7) yields the assertion (4.10).
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The condition [M2
0 f(2π)]3 = [M0f(2π)]2 becomes∫ 2π

0

(2π − s)e−1+cos sf3(s)ds

=

∫ 2π

0

e−1+cos s(f2(s) + (2π − s− sin s)f3(s))ds,

or

[M2
0 f(2π)]3 = [M0f(2π)]2 ⇐⇒

∫ 2π

0

e−1+cos s(f2(s)− sin sf3(s))ds = 0.

This assertion together with (4.8) and (4.9) yields the assertion (4.11).
Furthermore, if f3(s) ≡ 0, then [M0f(2π)]3 = 0. If f3(s) ≡ 0 and f2(s) ≡ 1,

then [M2
0 f(2π)]3 6= [M0f(2π)]2. This implies that R(−L) ) R(L2), so that

the descent of −L is equal to 2. �

We check the sufficient conditions given in Corollary 3.7. If

Mn−j
α f(τ) ∈ R((I − Vα(0))j+1), j = 0, 1, . . . , n− 1,

then the equation (1.1) has a solution. If n = 2, α = 0, then the condition
(3.19) becomes

M2
0 f(2π) ∈ R((I − V (0))), M0f(2π) ∈ R((I − V (0))2).

These conditions are equivalent to the conditions

(4.19) [M2
0 f(2π)]3 = 0, [M0f(2π)]2 = 0, [M0f(2π)]3 = 0.

If n = 3, α = 0, then the condition (3.19) becomes

M3
0 f(2π)∈R((I−V (0))),M2

0 f(2π)∈R((I−V (0))2),M0f(2π)∈R((I−V (0))3).

Next we solve the equations −Lu = f , (−L)2u = f . At first the following
result holds.

Proposition 4.2. The solution u of the equation −Lu = f for f ∈ R(−L) is
given by u(t) = U(t, 0)w0 +M0f(t), where

w0 =

 1
1−e2πa

∫ 2π

0
ea(2π−s)f1(s)ds

c

− 1
2π

∫ 2π

0
e−1+cos s(f2(s)− (s+ sin s)f3(s))ds


for any constant c. If f ∈ R(L2), then

w0 =

 1
1−e2πa

∫ 2π

0
ea(2π−s)f1(s)ds

c
1
2π

∫ 2π

0
e−1+cos s(sf3(s))ds


for any constant c.
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Proposition 4.3. The solution u of L2u = f for f ∈ R(L2) is given by
u(t) = U(t, 0)(w0 + tw1) +M2

0 f(t) with

(4.20) w0 =

 1
(1−e2πa)2

∫ 2π

0
(2π − s+ se2πa)ea(2π−s)f1(s)ds

c1
c2

 ,

(4.21) w1 =

 1
1−e2πa

∫ 2π

0
ea(2π−s)f1(s)ds

−c2 + 1
2π

∫ 2π

0
se−1+cos s(f2(s) + (2π − s− sin s)f3(s))ds

1
2π

∫ 2π

0
se−1+cos sf3(s)ds


for any constants c1 and c2.

Proof. The solution u of L2u = f for f ∈ R(L2) is given by Theorem 3.4 as

u(t) = U(t, 0)(w0 + tw1) +M2
0 f(t)

with w0 and w1 such that

(I − V (0))2w0 = H0,2(2)f, w1 =
1

2π
[(I − V (0))w0 −H0,2(1)f ].

From the first equation w0 = t[w10, w20, w30] is given by

w10 =
1

(1− e2πa)2
[H0,2(2)f ]1, w20 = c1, w30 = c2

for any constants c1 and c2. Thus w0 is given by (4.20), since

[H0,2(2)f ]1 = [(I − V (0))M2
0 f(2π)]1 + 2π[V (0)M0f(2π)]1

= (1− e2πa)[M2
0 f(2π)]1 + 2πe2πa[M0f(2π)]1

= (1− e2πa)

∫ 2π

0

(2π − s)ea(2π−s)f1(s)ds

+ 2πe2πa
∫ 2π

0

ea(2π−s)f1(s)ds

=

∫ 2π

0

(2π − s+ se2πa)ea(2π−s)f1(s)ds.

Since H0,2(1)f = M2
0 f(2π)− 2πM0f(2π) from the definition (3.10),

w1 =
1

2π

(
(I − V (0))w0 − [M2

0 f(2π)− 2πM0f(2π)]
)
.

We set w1 = t[w11, w21, w31]. Then

w11 =
1

2π

(
(1− e2πa)w10 − [[M2

0 f(2π)]1 − 2π[M0f(2π)]1
)

=
1

2π

(
1− e2πa

(1− e2πa)2

∫ 2π

0

(2π − s+ se2πa)ea(2π−s)f1(s)ds

−
∫ 2π

0

(2π − s)ea(2π−s)f1(s)ds+ 2π

∫ 2π

0

ea(2π−s)f1(s)ds

)
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=
1

2π

1

(1− e2πa)

∫ 2π

0

(2π − (1− e2πa)s)ea(2π−s)f1(s)ds

+
1

2π

∫ 2π

0

sea(2π−s)f1(s)ds

=
1

1− e2πa

∫ 2π

0

ea(2π−s)f1(s)ds,

and

w21 =
1

2π

(
(−2π)w30 − [[M2

0 f(2π)]2 − 2π[M0f(2π)]2
)

= −c2 −
1

2π

(∫ 2π

0

(2π − s)e−1+cos s(f2(s) + (2π − s− sin s)f3(s))ds

−2π

∫ 2π

0

e−1+cos s(f2(s) + (2π − s− sin s)f3(s))ds

)
= −c2 −

1

2π

∫ 2π

0

(−s)e−1+cos s(f2(s) + (2π − s− sin s)f3(s))ds.

Since the third row of I − V (0) is [0, 0, 0] and [M0f(2π)]3 = 0, we have

w31 = − 1

2π
[M2

0 f(2π)]3 = − 1

2π

∫ 2π

0

(2π − s)e−1+cos sf3(s)ds

= −[M0f(2π)]3 −
1

2π

∫ 2π

0

e−1+cos s(−sf3(s))ds

=
1

2π

∫ 2π

0

e−1+cos ssf3(s)ds.

Thus w1 is given by (4.21). �

Corollary 4.4. If

(4.22) f(t) = t[cos t, e− cos t cos t, 0],

then the solution u of L2u = f is given by

(4.23) u(t) =

 (a2−1) cos t−2a sin t
(a2+1)2

(c1 + c2 sin t)e1−cos t + (1− cos t)e− cos t

c2e
1−cos t


for any constants c1 and c2.

4.2. An example of PDE

Denote by X = L2([0, π],C) the space of all square integrable functions from
[0, π] to C. Then, X is a Hilbert space with the usual inner product 〈·, ·〉 such
that

〈w, z〉 =

∫ π

0

w(x)z(x)dx, w, z ∈ X.
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Let us consider a partial differential equation of the form

(4.24)
∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ (α(t)− γ)u(t, x) + f(t, x), 0 ≤ x ≤ π, t ≥ 0

(4.25) u(t, 0) = u(t, π) = 0, t ≥ 0,

where γ ∈ R, α(t) is a π-periodic, continuous scalar-valued functions and f ∈
Pπ(X).

First, we define a linear operator A0 by A0u = u′′ for u ∈ D(A0), where

D(A0) =
{
u ∈ X : u ∈ C1([0, π],C), u′ is absolutely continuous,

u′′ ∈ X,u(0) = u(π) = 0} .

Then A0 is a closed linear operator defined on the dense domain D(A0) and a
self-adjoint operator on X. Moreover, A0 generates a C0-compact semigroup
T0(t) on X such that ‖T0(t)‖ = e−t for t ≥ 0. Since A0 is a self-adjoint operator
on X, so is T0(t) for each t ≥ 0, cf. [5, Corollary 4.5, p. 31], or [11, Corollary
10.6, p. 41].

The point spectrum of A0 is given by

σp(A0) = {−n2 : n = 1, 2, . . .}.

For n = 1, 2, . . . , the function φn(x) =
√

2
π sinnx is a basis of the null space

N (−n2I−A0), and {φn}∞n=1 is a complete orthonormal basis of X. Thus every

w ∈ X is represented as w =
∑∞
n=1〈w, φn〉φn. Since T0(t)φn = e−n

2tφn, we
obtain that

(4.26) T0(t)w =

∞∑
k=1

e−k
2t〈w, φk〉φk, w ∈ X,

and that

(4.27) N (e−n
2tI − T0(t)) = {cφn(x) : c ∈ C}.

The equation (4.26) implies that 0 6∈ σp(T (t)), t ≥ 0. Then

σp(T0(t)) = {e−n
2t : n = 1, 2, . . .} = etσp(A0),

since etσp(A0) ⊂ σ(Tp(t)) ⊂ etσp(A0) ∪ {0} in general (see [11, Theorem 2.4,

Chap. 2]). Note that σ(A0) ⊂ R since A0 is self-adjoint; etσ(A0) ⊂ σ(T0(t)) \
{0}, t ≥ 0 by the spectral mapping theorem of semigroups; σ(T0(t)) \ {0} =
σp(T0(t)) since T0(t) is a compact operator. Therefore, it follows that σ(A0) =

σp(A0). Moreover,σp(A0) = σn(A0) and etσn(A0) = σn(T0(t)), since these
equations hold for compact semigroups (see [7, Corollary 2.14]). Therefore,

σ(A0) = σp(A0) = σn(A0),

σ(T0(t)) \ {0} = σp(T0(t)) = σn(T0(t)) = etσn(A0), t > 0.

The operator T0(t), t ≥ 0 has the following properties. To show this we refer
to the following lemma.
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Lemma 4.5 ([12, Theorem 7.9, V.7]). If T is a compact operator on a Banach
space X and if λ ∈ C, then the ascent and descent of λI − T are both finite
(and hence equal). If the ascent is p, then

X = R((λI − T )p)⊕N ((λI − T )p),

where both subspaces are closed.

We note that in general, if S is a self-adjoint operator on a Hilbert space,
then N (S2) = N (S). Indeed, if S2x = 0, then 0 = 〈S2x, x〉 = 〈Sx, Sx〉, whence
Sx = 0. Thus N (S2) ⊂ N (S), whence N (S2) = N (S).

Lemma 4.6. The following results hold:

(1) The ascent and the descent of e−n
2tI − T0(t), n = 1, 2, . . . , are both 1,

and N (e−n
2tI − T0(t)) is given by (4.27).

(2) X = N (e−n
2tI − T0(t))⊕R(e−n

2tI − T0(t)).
(3)

N (e−n
2tI − T0(t)) = (R(e−n

2tI − T0(t)))⊥,

(N (e−n
2tI − T0(t)))⊥ = R(e−n

2tI − T0(t)).

Proof. Since T0(t) is a self-adjoint operator, the ascent of e−n
2tI − T0(t) is

1. The remainder of Lemma follows from Lemma 4.5 together with the well-
known results about the orthonormal complements, ranges and null spaces (cf.
[12, p. 244]). �

Next, we define a closed linear operator A by

Au = A0u− γu for u ∈ D(A) = D(A0),

which is the generator of the C0-semigroup T (t) = e−γtT0(t) on X.
If we set

A(t) = A+ α(t)IX = A0 + (α(t)− γ)IX for ∈ R,
then the equation (4.24) is a perturbation of the homogeneous equation

(4.28)
d

dt
u(t) = A(t)u(t).

Set

a(t, s) =

∫ t

s

α(r)dr, a(t) =

∫ t

0

α(r)dr.

Clearly, a(t, s) = a(t)−a(s), a(t+π, s+π) = a(t, s) and a(t+π) = a(t)+a(π).
Then the solution operator U(t, s) of the equation (4.28) is represented as

U(t, s) = ea(t,s)T (t− s) = ea(t)−a(s)−γ(t−s)T0(t− s), t ≥ s.
Then,

V (0) := U(π, 0) = ea(π)−γπT0(π).

Since T0(π) is a compact operator, so is V (0). The operator V (0) has the
following properties.
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Lemma 4.7. Set

αn =
a(π)

π
− γ − n2, n = 1, 2, . . . .

Then the following results hold:
(1) σp(V (0)) = σn(V (0))) = {eπαn : n = 1, 2, . . .}.
(2) The ascent and the decent of the operator eπαnI − V (0) are both 1.
(3)

(4.29) N (eπαnI − V (0)) = {cφn : c ∈ C},

(4.30) R(eπαnI − V (0)) = {cφn : c ∈ C}⊥.

Proof. (1) Since

σp(T0(π)) = σn(T0(π)) = {e−n
2π : n = 1, 2, . . .},

and

ea(π)−γπ−n
2πI − V (0) = ea(π)−γπ(e−n

2πI − T0(π)),

we have

σp(V (0)) = σn(V (0))) = {eπαn : n = 1, 2, . . .}.
The assertions (2) and (3) follow from Lemma 4.6. �

It is easy to show that {U(t, s)}t≥s is a π-periodic evolutionary process
on X. Let L be the generator of the evolution semigroup {Th}h≥0 on Pπ(X)
associated with {U(t, s)}t≥s. Then the operator L has the following properties.

Lemma 4.8. Set

αn,k = αn + 2k
√
−1 : n = 1, 2, . . . , k = 0,±1,±2, . . . .

Then the following results hold:
(1) σp(L) = σn(L) = {αn,k : n = 1, 2, . . . , k = 0,±1,±2, . . .}.
(2) The ascent and the decent of the operator αn,kI − L are both 1 and

dimN (αn,kI − L) = 1.

Proof. It follows from [7, Proposition 4.2] that

σp(L) = σn(L) = {αn,k : n = 1, 2, . . . , k = 0,±1,±2, . . .}.

Since

(4.31) N ((αn,kI − L)m) ∼= N ((eπαnI − V (0))m), m = 1, 2, . . . ,

by [9, Corollary 4.4], where ∼= means the relation of being isomorphic, the
ascent and the decent of the operator αn,kI − L are both 1, cf. [7, Theorem
3.4]. The assertions (4.29) and (4.31) imply that

dimN (αn,kI − L) = 1

for all k. �



INHOMOGENEOUS PERIODIC EVOLUTIONARY PROCESS 1875

Let us find the solution u of

(4.32) (αnI − L)
2
u = f, n 6= 1,

where

(4.33) f(t, x) = ea(t)−
a(π)
π tφ1(x) =

√
2

π
ea(t)−

a(π)
π t sinx.

Then we obtain the following result.

Proposition 4.9. The solution of the equation (4.32) with f given by (4.33)
is represented as

(4.34) u(t, x) = ea(t)−
a(π)
π t

√
2

π

(
1

(n2 − 1)2
sinx+ c sinnx

)
,

where c is any constant.

Proof. We define a π-periodic function b(t) by

b(t) = a(t)− a(π)

π
t.

With the notation of (2.1), we have

Uαn(t, s) = e−αn(t−s)U(t, s)

= e−( a(π)
π −γ−n

2)(t−s)ea(t,s)−γ(t−s)T0(t− s)

= e−(
a(π)
π −n

2)(t−s)ea(t)−a(s)T0(t− s) t ≥ s,

= en
2(t−s)+b(t)−b(s)T0(t− s)

and

Vαn(0) = en
2πT0(π).

Note that

I − Vαn(0) = en
2π(e−n

2πI − T0(π)).

By Lemma 4.7 the operator Vαn(0) has the following properties.
(i) The ascent and the decent of the operator I − Vαn(0) are both 1.
(ii) N (I − Vαn(0)) = {cφn : c ∈ C} and R(I − Vαn(0)) = {cφn : c ∈ C}⊥.
Now we will apply Theorem 2.6 to the equation (4.32). To do so, we calculate

w0, w1 and M2
αnf(t). Since

Uαn(t, s)f(s) = en
2(t−s)+b(t)−b(s)T0(t− s)b(s)φ1

= eb(t)+(n2−1)(t−s)φ1 (t ≥ s),

we have

Mαnf(t) =

∫ t

0

eb(t)+(n2−1)(t−s)φ1ds = eb(t)
e(n

2−1)t − 1

n2 − 1
φ1,
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and

M2
αnf(t) =

∫ t

0

(t− s)eb(t)+(n2−1)(t−s)φ1dr

= eb(t)

(
te(n

2−1)t

n2 − 1
− e(n

2−1)t − 1

(n2 − 1)2

)
φ1,

so that

Mαnf(π) =
e(n

2−1)π − 1

n2 − 1
φ1

and

M2
αnf(π) =

(
πe(n

2−1)π

n2 − 1
− e(n

2−1)π − 1

(n2 − 1)2

)
φ1.

Thus

Hαn,2(1)f = M2
αnf(π)− πMαnf(π) =

(
1− e(n2−1)π

(n2 − 1)2
+

π

n2 − 1

)
φ1.

Since

(4.35) (I − Vαn(0))φ1 = (I − en
2πT0(π))φ1 = (1− e(n

2−1)π)φ1,

we have

Hαn,2(2)f = (I − Vαn(0))(M2
αnf(π)− πMαnf(π)) + πMαnf(π)

= (1− e(n
2−1)π)

(
1− e(n2−1)π

(n2 − 1)2
+

π

n2 − 1

)
φ1 − π

1− e(n2−1)π

n2 − 1
φ1

=
(1− e(n2−1)π)2

(n2 − 1)2
φ1.

Therefore, the equation (3.11) for w0 in Theorem 3.4 becomes

(4.36) (I − Vαn(0))2w0 =
(1− e(n2−1)π)2

(n2 − 1)2
φ1.

The properties (i) and (ii) of Vαn(0) imply that the function in the right side
of (4.36) belongs to R((I − Vαn(0))2)(= R(I − Vαn(0))), that is, the equation
(4.36) has a solution w0. In fact, it follows from (4.35) that

(I − Vαn(0))2φ1 = (1− e(n
2−1)π)2φ1,

and hence

(I − Vαn(0))2
(

1

(n2 − 1)2
φ1

)
=

(1− e(n2−1)π)2

(n2 − 1)2
φ1.
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Then the function w0 = 1
(n2−1)2φ1 is a special solution of the inhomogeneous

linear equation (4.36). Since N ((I − Vαn(0))2) = N (I − Vαn(0)), the general
solution of (4.36) is given by

w0 =
1

(n2 − 1)2
φ1 + cφn,

where c is any constant. Since

(I − Vαn(0))w0 =
1− e(n2−1)π

(n2 − 1)2
φ1,

it follows from Theorem 3.4 that

πw1 = (I − Vα(0))w0 −Hαn,2(1)f = − π

n2 − 1
φ1,

that is,

w1 = − 1

n2 − 1
φ1.

Therefore, by Theorem 2.6 the solution u(t) of the equation (4.32) is represented
as

u(t) = Uαn(t, 0)(w0 + tw1) +M2
αnf(t)

= en
2t+b(t)T0(t)

(
1

(n2 − 1)2
φ1 + cφn −

t

n2 − 1
φ1

)
+ eb(t)

(
te(n

2−1)t

n2 − 1
− e(n

2−1)t − 1

(n2 − 1)2

)
φ1

= e(n
2−1)t+b(t)

(
1

(n2 − 1)2
φ1 −

t

n2 − 1
φ1

)
+ eb(t)cφn

+ e(n
2−1)t+b(t)

(
t

n2 − 1
− 1

(n2 − 1)2

)
φ1 + eb(t)

1

(n2 − 1)2
φ1

= eb(t)
(

1

(n2 − 1)2
φ1 + cφn

)
,

which shows (4.34). �
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