For a locus with two alleles (IA and IB), the frequencies of the alleles are represented by $$p=f(I^A)={\frac{2N_{AA}+N_{AB}}{2N}},\;q=f(I^B)={\frac{2N_{BB}+N_{AB}}{2N}}$$ where NAA, NAB and NBB are the numbers of IAIA, IAIB and IBIB respectively and N is the total number of populations. The frequencies of the genotypes expected are calculated by using p2, 2pq and q2. Choi defined the density and operator for the value of the frequency of one gene and found the adapted partial differential equation as a follow-up for the frequency of alleles and applied this adapted partial differential equation to several diploid model [1]. In this paper, we find adapted equations for the model for selection against recessive homozygotes and in case that the alley frequency changes after one generation of selection when there is no dominance. Also we consider the triploid model with three alleles IA, IB and i and determine whether six genotypes observed are in Hardy-Weinburg for equilibrium.
Several prediction model of penetration rate (PR) of tunnel boring machines (TBMs) have been focused on applying to design stage. In construction stage, however, the expected PR and its trends are changed during tunneling owing to TBM excavation skills and the gap between the investigated and actual geological conditions. Monitoring the PR during tunneling is crucial to rescheduling the excavation plan in real-time. This study proposes a sequential prediction method applicable in the construction stage. Geological and TBM operating data are collected from Gunpo cable tunnel in Korea, and preprocessed through normalization and augmentation. The results show that the sequential prediction for 1 ring unit prediction distance (UPD) is R2≥0.79; whereas, a one-step prediction is R2≤0.30. In modeling algorithm, a gradient boosted regression tree (GBRT) outperformed a least square-based linear regression in sequential prediction method. For practical use, a simple equation between the R2 and UPD is proposed. When UPD increases R2 decreases exponentially; In particular, UPD at R2=0.60 is calculated as 28 rings using the equation. Such a time interval will provide enough time for decision-making. Evidently, the UPD can be adjusted depending on other project and the R2 value targeted by an operator. Therefore, a calculation process for the equation between the R2 and UPD is addressed.
It is important to measure the excavator's work productivity that estimates the bucket's payloads on a process. If the bucket isn't filled at every working cycle, the excavator's operator has to drive the machine more to achieve his work quota. If bucket is filled over with the load, the other way around, the transferred object has to spread out on the workplace. That causes additional work to clean the site. This paper proposes a method that can estimate the bucket's payload to improve the excavator's work productivity. This method assumes that the excavator is a lumped mass system. And it uses a 3 points angle (boom link, arm link, swing) and 2 points pressure (boom cylinder's input port and output port) of measurable data. Depending on assumptions, the bucket's payload can be calculated by the payload's motion equation. And this suggested method can be verified by simple experiments.
The occurrence and abundance of protozoa at advanced wastewater treatment plant were compared with operating parameters and effluent quality using statistical procedures. In correlation analysis between the distribution of protozoa and operating parameters, the distribution of protozoa was showed the operating condition of plant. Regression analysis between the distribution of protozoa and effluent quality up to 7 days, showed the R-square values of most regression equation were more than 0.6 and constant was higher than slope and could indicate effluent quality from sampling day to 7 days. Once enough data concerning protozoa, operating parameters and effluent has been gathered, the operator has a valuable tool for predicting plant performance and near-future effluent quality based on microscopic examination. Plant operator manipulates operating conditions if he knows near-future data of effluent is deteriorating. Perhaps more importantly it can be used to actually control the plant to adjust the operating conditions to obtain the protozoal populations that have been shown to provide the best effluent quality.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.10
no.4
/
pp.237-246
/
2012
In this study, numerical model for transport of radionuclide and colloid was developed. In order to solve reaction-migration governing equation for colloid and radionuclide, Strang-splitting Sequential Non-Iterative (SNI), which is one of Operator Splitting Method, was used for numerical method and this was coded by MATLAB. From the verification by comparing the simulation results with analytical solution considering only solute transport and rock diffusion, the Pearson's correlation coefficient was greater than 0.99 which demonstrates the accuracy of the model.
Linear response theory is proposed to be applied for theoretical description of the phenomena in mechanical spectroscopy of solid high polymers below glass transition temperatures. The energy dissipation by sample is given in terms of certain time correlation functions. It is shown that the result leads to the result by Kirkwood on the energy loss and relaxation of cross-linked polymers, if the Liouville operator is replaced by the diffusion equation operator of Kirkwood. An approximation method of calculating the correlation functions is considered in order to show a way to calculate relaxation times. Using the approximation method, we consider a double-well potential model for energy relaxation, in order to see a connection between the present theory and a model theory used in mechanical energy relaxation phenomena of solid polymers containing pendant cyclohexyl groups at low temperature.
Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
/
2004.11a
/
pp.179-182
/
2004
This paper deals with a new mathematical formulation of nonlinear wave profile based on Banach fixed point theorem. As application of the formulation and its solution procedure, some numerical solutions was presented in this paper and nonlinear equation was derived. Also we introduce a new operator for iteration and getting solution. A numerical study was accomplished with Stokes' first-order solution and iteration scheme, and then we can know the nonlinear characteristic of Stokes' high-order solution. That is, using only Stokes' first-oder(linear) velocity potential and an initial guess of wave profile, it is possible to realize the corresponding high-oder Stokian wave profile with tile new numerical scheme which is the method of iteration. We proved the mathematical convergence of tile proposed scheme. The nonlinear strategy of iterations has very fast convergence rate, that is, only about 6-10 iterations arc required to obtain a numerically converged solution.
In this presentation, the particles at the matter surface (metal, crystal, nano) will be considered as the control target outside the physical domain. As is well known that control problems of quantum particles at surface had been investigated in various aspects in last couple of years, but the realization of control would become rather difficult than theoretical results. Especially, whether surface control would be valid? what kind of particles at what kind of matter surfaces can be controlled? so many questions still left as the mystery in the current research literature and papers. It means that the direct control sometime does not easy. On the other hands, control outside the physical domain is quite a interest consideration in mathematics, physics and chemistry. The main plan is to take the quantum systems operator (such as Laplacian ∆) in the form of fractional operator (∆s , 0 < s < 1), then to consider the control outside of physical domain. Fortunately, there are many published articles in the field of applied mathematics can be referred for the achievement of control outside of domain. The external quantum control would be a fresh concept to do the physical control, first in the theoretic, second in the computational, final in the experimental issues.
A two-dimensional stream tube dispersion model is developed to simulate accurately transverse dispersion processes of pollutants in natural channels. Two distinct features of the stream tube dispersion model derived herein are that it employs the transverse cumulative discharge as an independent variable replacing the transverse distance and that it is developed in a natural coordinate system which follows the general direction of the channel flow. In the model studied, Eulerian-Lagrangian method is used to solve the stream tube dispersion equation. The stream tube dispersion equation is decoupled into two components by the operator-splitting approach; one is governing advection and the other is governing dispersion. The advection equation has been solved using the method of characteristics and the results are interpolated onto Eulerian grid on which the dispersion equation is solved by centered difference method. In solving the advection equation, cubic spline interpolating polynomials is used. In the present study, the results of the application of this model to a natural channel are compared with a steady-state flow measurements. Simulation results are in good accordance with measured data.
Let K be a bounded linear operator from Hilbert space $H_1$ into Hilbert space $H_2$. When numerically solving the first kind equation Kf = g, one usually picks n orthonormal functions $\phi_1, \phi_2,...,\phi_n$ in $H_1$ which depend on the numerical method and on the problem, see Varah [12] for more details. Then one findes the unique minimum norm element $f_M \in M$ that satisfies $\Vert K f_M - g \Vert = inf {\Vert K f - g \Vert : f \in M}$, where M is the linear span of $\phi_1, \phi_2,...,\phi_n$. Such a solution $f_M \in M$ is called the M-solution of K f = g. Some methods for finding the M-solution of K f = g were proposed by Banks [2] and Marti [9,10]. See [5,6,8] for convergence results comparing the M-solution of K f = g with $f_0$, the least squares solution of minimum norm (LSSMN) of K f = g.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.