• Title/Summary/Keyword: operator environment

Search Result 499, Processing Time 0.026 seconds

A Study on Plant Training System Platform for the Collaboration Training between Operator and Field Workers (운전자와 현장조업자의 협동훈련을 위한 플랜트 훈련시스템 플랫폼 연구)

  • Lee, Gyungchang;Chung, Kyo-il;Mun, Duhwan;Youn, Cheong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.420-430
    • /
    • 2015
  • Operator Training Simulators (OTSs) provide macroscopic training environment for plant operation. They are equipped with simulation systems for the emulation of remote monitoring and controlling operations. OTSs typically provide 2D block diagram-based graphic user interface (GUI) and connect to process simulation tools. However, process modeling for OTSs is a difficult task. Furthermore, conventional OTSs do not provide real plant field information since they are based on 2D human machine interface (HMI). In order to overcome the limitation of OTSs, we propose a new type of plant training system. This system has the capability required for collaborative training between operators and field workers. In addition, the system provides 3D virtual training environment such that field workers feel like they are in real plant site. For this, we designed system architecture and developed essential functions for the system. For the verification of the proposed system design, we implemented a prototype training system and performed experiments of collaborative training between one operator and two field workers with the prototype system.

Human Assisted Fitting and Matching Primitive Objects to Sparse Point Clouds for Rapid Workspace Modeling in Construction Automation (-건설현장에서의 시공 자동화를 위한 Laser Sensor기반의 Workspace Modeling 방법에 관한 연구-)

  • KWON SOON-WOOK
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.151-162
    • /
    • 2004
  • Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate computational tractability. In this research, a human operator's ability to quickly evaluate and associate objects in a scene is exploited. The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions.

A Study on Operator Allocation Problem in Cellular Manufacturing Systems (셀 생산방식 시스템에서 작업자 할당문제에 관한 연구)

  • 홍상우
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.23-31
    • /
    • 2000
  • This paper addresses the static operator allocation problem in celluar manufacturing systems(CMS). An assembly environment is considered where each component going into the final product is manufactured in an individual cell. There are m such cells and it is required to manufacture n varieties of products where n>m. An mathematical model and two heuristic algorithms for static operators allocation to the cells to balance workload for minimizing makespan are developed and tested.

  • PDF

Linear Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 선형 디지털 분산 제어 시스템 개발)

  • Kim Do Wan;Joo Young Hoon;Park Jin Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.36-41
    • /
    • 2005
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for HVAC system are provided.

SENSITIVITY ANALYSIS IN FUZZY RELIABILITY ANALYSISA

  • Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.764-769
    • /
    • 1988
  • In this paper the failure possibility and the error possibility are used to represent reliability of a technical component and that of a human operator, respectively. The failure possibility and the error possibility are fuzzy sets on the interval [0,1]. In a man-machine system, reliability of the technical component and that of the human operator are usually affected by many factors, e.g., the environment in which a machine is operated, psychological stress of the human operator, etc. The possibility is derived from not only the failure or the error rate but also estimates of these factors. The fuzzy reasoning plays an important role in the derivation. The reliability analysis is performed by the use of the possibility obtained by the present method. Moreover this paper discusses the sensitivity analysis which evaluates what extent the change of the estimation of each factor has an influence on reliability of a man-machine system. The important factors to be ameliorated are shown through the sensitivity analysis.

  • PDF

The Application of Ecological Interface Design Methodology for Digitalized MCR in Nuclear Power Plant

  • Ra, Doo Wan;Cha, Woo Chang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Objective: This study proposes the application of Ecological Interface Design(EID) method that is effective for situation awareness in digitalized environment. Background: While cognitive interface design method such as Information Rich Display(IRD) is simply focused on existing information for user, EID method helps users' resource to be solved to higher ion task such as diagnostic and problem solving. Method: Using EID method based on Work Domain Analysis (WDA), it was analyzed and designed for Steam Generator(SG) Water Level control process in a digitalized Main Control Room of Nuclear Power Plant. Proposed EID example is evaluated through interviews by expert & operator. Results: The result of expert & operator showed that EID display might give an aid for operator's decision. Conclusion: The results can reduce critical accidental damage that occurred due to cognitive load and so critical human error. Application: This study may be impact on situation awareness study for digitalized interface design.

Improved Dynamic Subjective Logic Model with Evidence Driven

  • Qiang, Jiao-Hong;Xin, Wang-Xin;Feng, Tian-Jun
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.630-642
    • /
    • 2015
  • In Jøsang's subjective logic, the fusion operator is not able to fuse three or more opinions at a time and it cannot consider the effect of time factors on fusion. Also, the base rate (a) and non-informative prior weight (C) could not change dynamically. In this paper, we propose an Improved Subjective Logic Model with Evidence Driven (ISLM-ED) that expands and enriches the subjective logic theory. It includes the multi-agent unified fusion operator and the dynamic function for the base rate (a) and the non-informative prior weight (C) through the changes in evidence. The multi-agent unified fusion operator not only meets the commutative and associative law but is also consistent with the researchers's cognitive rules. A strict mathematical proof was given by this paper. Finally, through the simulation experiments, the results show that the ISLM-ED is more reasonable and effective and that it can be better adapted to the changing environment.

An Analysis for the Characteristics of Railroad Central Control Center and the Duty of the Operator (Focused on AREX C.C.C.) (철도 종합관제실 특성 및 관제사의 직무 분석 (공항철도 종합관제실을 중심으로))

  • Kim, Jung-Gon;Lee, Won-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1955-1963
    • /
    • 2008
  • How can a train move? While a car is driven by a driver who gets the traffic information and takes the road, a train is operated on the designated(or predetermined) track by the operator or the control center. There have been a great deal of changes and evolutions in the railroad environment. Along with these transitions, there have been also a considerable amount of changes in the control center. There has been no detailed analysis for the control center even though its importance has been recognized. It goes without saying that CCC(Central Control Center)'s importance as the core of the train driving system. Such an importance is true for the automated driving system such as the light rail system. Therefore this paper analyzes the CCC of AREX(Airport Express) from the various aspects, i.e., organization, personnel assignment, the way of working, qualification and job analysis for the operator.

  • PDF

Teleoperation by using Smith prediction and Grey prediction with a Time-delay in a Non-visible Environment (스미스 예측기와 그레이 예측 방법을 적용한 시간 지연이 있는 비 가시 환경에서의 원격로봇제어)

  • Jung, JaeHun;Kim, DeokSu;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.277-284
    • /
    • 2016
  • A new prediction scheme has been proposed for the robust teleoperation in a non-visible environment. The positioning error caused by the time delay in the non-visible environment has been compensated for by the Smith predictor and the sensory data have been estimated by the Grey model. The Smith predictor is effective for the compensation of the positioning error caused by the time delay with a precise system model. Therefore the dynamic model of a mobile robot has been used in this research. To minimize the unstable and erroneous states caused by the time delay, the estimated sensor data have been sent to the operator. Through simulations, the possibility of compensating the errors caused by the time delay has been verified using the Smith predictor. Also the estimation reliability of the measurement data has been demonstrated. Robust teleoperations in a non-visible environment have been performed with a mobile robot to avoid the obstacles effective to go to the target position by the proposed prediction scheme which combines the Smith predictor and the Grey model. Even though the human operator is involved in the teleoperation loop, the compensation effects have been clearly demonstrated.