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Human Assisted Fitting and Matching Primitive
Objects to Sparse Point Clouds for Rapid Workspace
Modeling in Construction Automation
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Abstract

Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a

scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a

finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be

capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate

embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with

an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate

computational tractability. In this research, a human operator’ s ability to quickly evaluate and associate objects in a scene is exploited.

The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These

groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and

modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated

obstacle avoidance and equipment control functions.
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1. Introduction

The objective of a computer vision system is to recognize visual
information to assist the vision system in understanding an
automation task (Arman et al. 1990, Arman et al. 1993). In several
applications, such as path planning of autonomous equipment,
assembly and inspections for manufacturing, and tele-operated
control of heavy equipment, three-dimensional (3D) workspace
information can be used to update workspace information, prove
graphical aid, and provide a mathematical model to compute location
and orientation (Johnson et al. 1999). Graphical workspace modeling
can bring about improvements in safety while at the same time
lessening the need for skilled workers to operate heavy equipment

under a wide range of working conditions. There are two general
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modes in which graphical workspace modeling can be applied for
equipment operations: (1) as interactive visual feedback while a
piece of heavy equipment is being operated, or (2) as a tool for 3D
graphical simulation. In the latter case, application of such a
modeling technique can ultimately contribute to an equipment
operator’s sense of whether-and how-he/she should move before
actually proceeding to do so (Kim et al. 000, McLaughlin et al.
2002). In this paper, we address the need for three-dimensional
geometrical workspace information for equipment control functions
and obstacle avoidance in construction. We present algorithms that
accurately fit and match objects with regard to location and
orientation to sparse point clouds that have less than 50 scanned
points for each object in a construction scene. The implementation of
these algorithms will allow a human operator to rapidly construct a
world model from unfiltered real-world range data.
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1.1 ARange Data

Considerable effort has been devoted to the development of
various methods for extracting geometrical information from scenes.
This extraction is still a major concemn for both computer vision and
robot vision (Lebegue et al. 1994, Tsukiyama 1997).

The need for real-time determination of the 3D pose of rigid
objects has been pointed out by a number of researchers. Such a
system needs to provide full 3D pose estimation of arbitrarily shaped
objects in real-time. Such systems have been difficult to develop for
the three reasons: (1) there is less sensitivity for accuracy of 3D pose
estimation in two dimensional video image data, (2) the identification
of features and correspondence with the objects in the database are
difficult problems in current 3D pose estimation applications, and (3)
real-time 3D pose estimation is difficult to achieve due to the high
computational load of existing methods (Simon et al. 1993).

Laser range scanner has been widely used to obtain 3D range data
for construction site scenes (Cheok et al. 1999). The uses of laser
range scanners in the construction industry include: (1) generating
3D as-built model, (2) tracking terrain changes due to excavation, (3)
site inspection, (4) aerial surveying, and (5) process simulation and
operator training. Unlike traditional survey methods, range data can
be captured rapidly because no target reflectors are required. Unlike
ultrasonic and stereo vision, the laser range scanner provides a large
amount of precise data.

Research related to the use of laser range scanner in construction
has focused on issues such as capturing 3D-digital conditions of the
construction project, tracking construction process in order to enable
project control, and integrating construction process information into
life cycle data. Laser range scanners have proven to be beneficial for
tele-operable control of semi-automated or automated equipment on
large construction sites where timely, on-site decisions require rapid
recognition and accurate measurement of objects in the workspace.

A limitation of most workspace modeling applications is their
reliance upon analyzing dense point cloud data, which requires
computationally intensive processing that cannot be used for real-
time equipment control. The low accuracy in extracting objects from
dense point clouds is an additional limitation of current modeling
systems. For real-world robotic, semi-automated, or automated
equipment, obtain geometric information of target objects must be
obtained rapidly (Lebegue et al. 1994, Vemuri t al. 1986).

Current workspace modeling applications demand large amounts

of computation due to very large data sets. Furthermore, these
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algorithms may not be appropriate for symmetric objects (Johnson
1997) since their representation of these kinds of objects makes it
difficult to execute automated path planning due to the high
computational cost of scanning each point on the surface (Sabata t al.
1996).

1.2 Usage of range information in construction automation

Construction site environmental characteristics vary in
temperature, humidity, sound, lighting, and air quality. Noise from
equipment and other disturbances can cause miscommunication
between an equipment operator and the person who directs the
operator. The physical environment (i.e. a limited view from the
operator's position, depth perception limitations, and
miscommunications) of the construction site can cause collisions
between structures and equipment such as truck-mounted concrete
pumps, man-lifts, backhoes, or manipulators (Cho et al. 2002).
Furthermore, changes are continuously introduced in building units,
target materials, and equipment positions, and the operator has to
continuously set up-to-the-minute relative positions in the
conventional working environment. Repetitive equipment set up is
time consuming and lowers productivity.

Results from the Occupational Safety and Health Administration
(OSHA) study on construction fatalities in 1985-1989 reveals that
construction accidents can be categorized into five types: (1) falls
from elevation (33%), (2) struck-by accidents (22%), (3) cause-
m/between incidents (18%), (4) electrical shock (17%), and (5) all
other factors (10%) (Haas et al. 1995). In many cases, construction
equipment operations have played role in such fatalities.

To improve safety and address the limitations of the work
environment, more accurate equipment controls are needed. Current
research shows that graphical models that help visualize geometric
information using descriptive three-dimensional models can improve
equipment controls for construction operations such as material
handling, heavy lifting, and earth moving (Kim et al. 2000, Stenz et
al. 1998, Cheok et al. 2000, Cho et al. 2001, Cho et al. 2002).

The use of range scanners for obtaining 3D range data for a
construction site scene is increasing quickly (Cheok et al. 2000). It is
possible to rapidly capture range data because, unlike traditional
surveys, no target reflectors are required. Nevertheless, rich and raw
data provided by range scanners and cameras are not sufficient for
automating the manipulation operation. If there is no application to

manipulate scanned data, these raw data cannot provide site
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information directly. Workspace modeling, the construction of a
virtual representation of the equipment’s working environment, can
be employed to facilitate automation tasks (Johnson et al. 1997).

1.3 3D object recognition methods using range data

To date, most of the research studies using range data have
concentrated on developing a 3D object recognition method. Object
recognition is a matching process between scene and model
description. Efficient matching is complicated by the variability of
object types, the difficulty in modeling some types of objects, and the
need to efficiently verify of the accuracy of the fully automated
equipment operation.

Johnson and Herbert (1999) developed an object recognition
system using spin images, which are used for matching different
surfaces for efficient object recognition in cluttered 3D scenes. They
used surface matching for model-based object recognition as well as
aligning two surfaces of the same object represented in two different
coordinate systems for the purpose of obtaining a transformation
between two coordinate systems.

Their approach matches surfaces based on matching individual
points on two different scanned surfaces. The two surfaces are
matched when the images of many points on the surfaces are similar.
It is difficult to define surface points so that they can be differentiated
from one another. Even though these researchers developed a new
method that can recognize objects by collating object information
stored in sensed 3D points, their method was not very efficient
because it required a large amount of time to filter dense point
clouds.

Johnson and Hoffman (1997) created a system for the semi-
automatic modeling of complex environments. Their system, called
Artisan, consists of laser range sensors and object modeling
applications. Artisan uses various kinds of 3D sensors, such as laser
range finders and stereo systems, to acquire image and range data.
Artisan also recognizes and locates objects using a matching
algorithm that can fuse the data taken from multisensor viewpoints.
This application has several advantages for workspace modeling;
however, it still has limitations such as difficulties in recognizing
shiny metal objects, and cylindrical object, represented object models
only on a single scale, and requiring a heavy computational load for
merging images and filtering data

Sabata and Aggarwal (1996) used a novel procedure to find
surface correspondence based on the hypergraph representation.
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Using planar and quadric surface pairings, motion transformation
was computed. Segmentation was performed in two steps. First, the
over-segmentation method using zero and first-order local surface
properties was performed, followed by the use of high order surface
representations to segment dense range images.

1.4. Use of 3D laser scanning in construction industry

The Autonomous Loading System (ALS) was developed at the
Robotics Institute at Camegie Mellon University (Stenz et al. 1998).
ALS is a fully automated truck-loading excavator. This system uses
two laser range scanners whose purpose is to recognize and localize
the truck, detect obstacles, and measure the soil face. It is assumed
that the hauling truck is parked on one side of the excavator. The
segmented data can be matched region by region to the simple model
of the truck bed. The identified four corner points of the sensor data
are used to compuite the position and orientation of the truck bed.

One of the disadvantages in ALS is that whenever a new truck
arrives for loading, the ALS must repeat the computing process of
matching model-to-scene, even though all of the trucks are identical
in shape. This results in decreased efficiency because the most
important issue of ALS is to ascertain object location, not to
recognize the object. Since human operator knows the object in
advance, collaboration between humans and ALS would be valuable
at this point: human have good decision making ability despite
incomplete or redundant information, while ALS provides computer
control skills when executing repetitive motion control.

Cyra Corporation has developed a laser range scanning system
(Cyrax) that extracts 3D data points of the work environment and
involves a semi-manual assisted 3D model regeneration method
using point clouds (2002). Cyrax combines a high-resolution
distance measurement sensor with software that creates 2D drawings
and 3D models that are exportable for industry standard CAD and
graphical modeling (IGES, AutoCAD DXF, Microstation DGN,
ASCII, BMP, and JPEG). Although the scanning process of this
system provides more precise as-built 3D models relatively faster
than other traditional manual measurement and design systems, it
still requires days or weeks for the modeling process, which is not
usetul for real-time decision making in construction operations.

NIST developed a system that can measure terrain changes due to
excavation at a construction site and demonstrate the results in a real-
time terrain assessment (Cheok et al. 2000, Stone et al. 2000). A

Riegel laser range scanner was used to scan terrain. The scanned
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terrain data was derived from two locations around the construction
site at the end of the workday. Post-processing consists of four steps:
(1) registering of the two scans based on the pre-defined positions of
the scanner, (2) fine tuning the registration visually to decide the
regions, (3) selecting of the region of interest using the scanned data,
and (4) computing a volume. Some of the disadvantages observed in
field-testing were that the battery used for the power supply needed
to be recharged after each use; the second scanner mounted on the
pole in the center of the construction site was disturbed by dirt piles
and construction equipment located in front of the scanner; manual
fine-tuning of the scanned data to perform merging was extremely
time-consuming; and computing supplementary volume was
awkward after the erection of the structure began.

2. The limitations of current methods and
discussion of the proposed methods

Most current methods for modeling work environments rely on
analyzing dense point cloud data, which require computationally
intensive processing and usually require longer periods of time than
the ongoing construction operation. The low accuracy in extracting
objects from dense clouds using large and expensive scanners ($30k-
$100k) is an additional limitation of full area range scanning and
fully automated object recognition methods. Cho (2001) has shown
that by exploiting a human operator’s ability to recognize objects in a
construction scene, pre-stored graphic representations of construction
objects can be matched and fitted to measured data in the
construction environment.

Most of the related research studies recently completed have
focused on automated object recognition to create world models
(Ebest et al. 2000), and very little research has examined the use of a
human operator’s ability to recognize objects in a construction site
work environment. The human ability to recognize objects is very
valuable for rapid workspace modeling of construction site scenes
since the object recognition algorithms currently being used require
heavy computational loads and present accuracy problems (Kim et
al. 2000, Cho et al. 2001)

Since most objects in a construction site are known and manmade,
they can be graphically generated and stored in an object database as
parametrically defined object classes. By exploiting a human
operator’s ability to recognize such objects, objects can be matched
and fitted to sensed data from 3D position sensors.
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The ability to extract models of real world objects in a construction
workspace for equipment operations from only a limited number of
scanned points is a significant advantage of this approach over full range
scanning methods that require more intensive computational loads.

This paper presents algorithms that accurately fit and match objects,
with regard to location and orientation, to sparse point clouds which
have less than 50 scanned points for each object. The implementation
of the algorithms will allow a human operator to rapidly construct a
world model from unfiltered real-world range data.

With respect to the geometric primitives most frequently
encountered in a construction site, it appears that a few types of
objects can be used to model a wide range of construction scenes.
Planar surfaces can be used for the partition of workspaces such as
fences and walls. Cuboids can be used for fitting and matching
structural objects such as columns, box-beams and walls, and for
finishing objects. Cylinders can be used to fit and match chemical
pipes, ventilation pipes, and concrete piles. The following fitting and
matching algorithms were developed for these primitives:

(1) Planar surface fitting and matching algorithms (included in
cuboid algorithm)

(2) Cuboid fitting and matching algorithms

(3) Cylindrical object fitting and matching algorithms

(4) Sphere fitting and matching algorithms

3. Experimental setup and human-assisted object fitting
and matching process

A single-axis laser range finder, a pan/tilt unit (PTU), and a
personal computer were used for the experimental set up.
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Figure 1. Laser Scanning System and Computer Controlled Large Scale
Manipulator

The single-axis laser range finder (DistoMemo) that is mounted on
the PTU is designed not only for hand-held operation, but also for



M5 M55 2004 10

computer use through an interface.

The measurements can be remotely taken and transferred directly
into the computer. The range of measurement of the laser range
finder is 100 m with an accuracy of +3 mm . The step size of the
tele-operated PTU, which controls the laser range finder, is of high
resolution (0.0128571° /step) and its maximum speed is a litle over
60° /second. Its error is 0.2 ¢m for every 10 min motion. Figure 1
shows an experimental setup that consists of a computer controlled
large scale manipulator (LSM) and laser scanning system at The
University of Texas at Austin’s Field Systems and Construction
Automation Lab (FSCAL). It can be used for pre-programmed
automated control experimentation after finishing workspace
modeling,

The sparse points cloud is acquired by the operator picking points
for each object using a single-axis laser range finder. The modeling

process involves the following functions:

(1) Select an object for scanning (by operator)

(2) Acquire sparse point cloud data in the form of range images

(3) Convert range data into xyz coordinates

(4) Analyze the features of each surface of the object

(5) Match all of the object surfaces with the model’s surfaces using
matching algorithms

(6) Fit the object into the point cloud using a fitting algorithm

4. Object fitting and matching algorithms

Graphical workspace modeling can improve construction
equipment control and operations. Equipment operators can use
graphical workspace models as an interactive visual feedback tool
while controlling equipment (Kim et al. 2000, McLaughlin et al.
2002). For the rapid modeling of construction site objects from
sparse point clouds three basic algorithms have been developed that
address construction site objects. These are: (1) the cuboid fitting and
matching algorithm, (2) the solid and hollow pipe fitting and
matching algorithm,(3) the sphere algorithm, and (4) the planar
algorithm. Since cuboid and cylinder types of primitives consist of 6
planar surfaces (cuboid), and two planar surfaces and one curved
surface (cylinder), the algorithms were developed as a surface based
fitting and matching method. Algorithm development and revisions
were based on lab experiments. By using these algorithms we

achieve: (1) accurate and reliable methods to save computational cost
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and time, (2) improved fitting and matching methods to attain real-
time execution, and (3) increased modeling accuracy with operator’s
assistance. Figure 2 shows the entire fitting and matching process.

Scanning object

\J

Range Finder Contro! Signat & ¢ Raw Range Duta

Range data acquisition

¥ Forward knamatics

Converting range data into x,y,z coordinates

i

Grouping the points by each surface using k-
nearest neighbors algorithm

¥

Matching surface to point cloud

Loop until workspace
modeling is completed

[

Fitting the object

h ]

Computing parameters of an object

']

Aligning and merging objects

Y

Scene generation function

¥

Automated equipment functions based upon
Equipment control virtual environment
system using virtual []

visual feedback

Equipment control system

!

Incremental move

.

Interference check

Y

T

No Y Yes

Task finished or enviconmental changed? . :

Figure 2. Fitting and Matching Process

4.1 Cuboid fitting and matching algorithm

A bounded cuboid is described by a set of vertex points vp= {a, b,
¢, d, e £, g h}, and is composed of 6 surfaces. A bounded plane, one
of the cuboid’s six surfaces, is represented by a set of parameters p =
{pl, p2, p3, p4} that defines a plane, and a set of edge points E that
lie in the plane and describes the vertices of the plane’s boundary.
The cuboid algorithm is used to find plane parameters for surfaces
such as normals of all planes and vertex points. An estimate of the
plane equation is found by the k-nearest neighbors algorithm. Then
the optimized plane is defined by the least squares method. This
method computes the best-fitted plane formed from a set of scanned
points u = {(Xi, Yi, Zi)}, which are scanned by an operator on the
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viewable three surfaces of a cuboid. After iterating the above steps on
the other surfaces, the intersecting edges and vertices are found from
the estimated three plane equation parameters. Consequently, the
parameters of the cuboid are computed using the edges and points on
each surface of the cuboid.

The cuboid algorithm consists of four steps:

(1) K-nearest neighbors to segment points onto each surface of the
cuboid

(2) Plane optimization using the least squares method to fit
surfaces of the cuboid

(3) Find the intersecting edge line between two surfaces and the
vertices

(4) Points projection and parameters computations

1) K-nearest neighbors:To find the nearest points from all
measured points in a cuboid, the k-nearest neighbor algorithm
was developed. This algorithm finds the nearest two points in a
3D space by computing all distances from one scanned point to
other scanned points. After finding the two nearest neighbor
points of each scanned point, we can get the list of all three-
point sets. Then the normal vector for each set of three-point
sets can be computed. Using these normals, the scanned points
can be segmented by each cuboid surface. The algorithm
developed uses the following procedure:

(1) Compute the distance from each single scanned point to the
other scanned points.

(2) Sort the pair-wise distance measurement data to determine the
two nearest neighbors to each single point, thereby forming a
three-point set for each point.

(3) Make an equation of a plane that contains the three-point sets
associated with each single point.

(4) Compute the normal vector of each plane.

(5)Sort all normals and determine the three most frequent normals
that represent three surfaces of a cuboid.

(6) Segment all the points into the three surfaces by assigning each
point to the closest surface.

(7) Repeat (loop) the above steps for every scanned point.

2) Plane optimization using the least squares fitting method: To
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find the optimized plane using the segmented points on each
surface, the least squares fitting method was applied. In a linear
equation the predicted Z or “(1)”, the error term is “(2)”. Given
a set of data points (xi, yi, zi), determine the values of A, B, and
C so that the predicted plane z minimizes the sum of the
squared residuals, “(2)”. This function is nonnegative and its
graph is a hyperparaboloid whose vertex occurs when the
gradient satistfies WG = (0, 0, 0). This leads to a system of three
linear equations in which A, B, and C can be easily solved.
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3) Finding the intersecting edge line between two surfaces and the
vertex (matching point of cuboid): The line of intersection of
two planes can be found by solving the two linear equations
representing the planes. After appling these equations to all
three surfaces, we can find three intersection edges. Therefore,
a vertex of a cuboid can be obtained from those three edges.

Point projection and computation of parameters of the cuboid:

After segmenting the points into the three surfaces of the cuboid, the
points should be projected onto the optimized surface. It is assumed
that two points, (x/, ¥I, z), (x2, y2, z2), are selected from the
optimized plane. The size of the cuboid can be determined by
computing the distance from each edge to the farthest point on a
certain surface. The distance d from point X to a line defined by the
end point P/ and the direction V can be found by calculating the
magnitude of the component of K-P1 that is perpendicular to the line
as shown in figure 4. The squared distance between the point K and
the line can be found by subtracting the square of the projection of K-
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P1 in the direction V from the square of K-P1. This provides us:

d’=(K-PR) -[proj,(K - P))*

=(K—P;)2—[(K——V[:‘)'KV]2 (6)
= (k- py - LE=RT

Figure 3 to 6 show the results of the cuboid fitting and matching
algorithm.

Puoints Projected on Their Optimized Planes

¥ : 50

Figure §; Segmenting the Points

Three Edges of the Cuboid ( Square - Measured, Circle - Guessed )

Figure 4. Three Edges of a Cuboid

75

Figure 5. Fitted and Matched Cuboid
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Figure 6. Actual Object

4.2 Solid cylinder fitting and matching algorithm

Four parameters can define a bounded cylinder: @ scalar radius 7;
an axis vector, ¢; a center point to identify the axis vector, ¢ = (Xc, Yc,
Zc), and a set of scanned points d = {(Xi, ¥, Zi)} that define the
boundary of the cylinder. This algorithm uses the nearest neighbor
algorithm to define the normal vector. Four scanned points, chosen
with the starting point, are used to find the planar surface of the
cylinder. The estimated planar surface is applied to group the points
into planar and curved surfaces. By projecting the points on the
curved surface, parameters r and ¢ can be estimated. The radius of
the circle is found as the distance from the center of the circle to any
point on the optimized curve. These projected points are connected
into chords in the circle and are used to estimate the center of the
circle ¢ . A primary estimation of the radius, t , is found by ¥
=mean( ¢ - k) (k'={the projected points on the optimized curve of
planar surface}). Consequently the final values of @, ¢, 7 are found by
the least squares method using data d. Figure 9 shows the segmented
points on the planar and curved surface of a solid cylinder. Figure 8
shows the points projected from the curved surface onto the planar
surface of the solid cylinder. Figure 9 shows the complete solid
cylinder model computed by the scanned points from the actual
object shown in Figure 10.

Grouped by the Algenthm

Figure 7. Segmentation (1)
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Grouped by the Algorithm

Figure 8. Segmentation ()

Figure 9. Modeled Solid Cylinder

Figure 10. Actual Cylinder

4.3 Hollow cyfinder fitting and matching algorithm

In this hollow cylinder fitting and matching method, Principal
Components Analysis (PCA) was used to determine the primary axis
of cylinder. Excluding the steps for computing the primary axis, the
other steps of the algorithm follow the same sequence as the solid
cylinder algorithm.

1t is important to diminish dimensionality by parsimonious data
reduction techniques. PCA is a distribution-based ordination method
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in which the distance between sites in an ordination diagram is
correlated with multi dimensional distribution (Lebegue et al. 1992).
PCA assumes that all vectors in a set of n dimensional samples al---
an can be explained by a single vector al. The vector a0 is derived
using the least squares method, in which the sum of the squared
distances between a0 and the various ak are minimized. We define
the square-error criterion function F}(a0) by

E,(a(,>=illao—akn 6)
b=l
1 ¢
p= n bZ=l a, ( )
Fy =3 Kao - )@ - P )

b=l

Projecting the sample data onto a line through the sample mean,
one-dimensional representation can be computed. If we let e be a unit
vector of the line direction, the line equation is

a=p+de ®)

Scalar d is the distance between the sample data and the sample
mean p. We can find the coefficients dk by minimizing the squared
criterion function.

n 2 n
Fy(d,,....d,.e) = Z“(p +de)- ak” = Z”dbe ~(a, - p)"z )]
b=1 52)

d, =ée'(a, -

(10)

The best direction ¢ of the line can be found by solving scatter
matrix U, which is defined by

U= i(ab - pla, - p)
b=l . (11)
Fi(e)=~e'Ue+Y |la, - p“2
(12) !
LaGrange multipliers can be used to maximize the efUe, which is
subject to the constraint llefl=/. Let ¢ be an undetermined multiplier.
We can do differentiation of

v=e'Ue—g(e'e—1)

(13)
with regard to e getting
ou
—=2Ue-2
o - 22 (14)

By setting the gradient vector equal to zero, we see that e should
be an eigenvector of the scatter matrix. The eigenvector will be the
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primary axis of the hyper-ellipsoid that can be obtained by reducing
the dimensionality of the feature space and by restricting attention to
the directions along the scatter of the cloud (Vermuri et al. 1986,
Schweikert 1966). It will be the primary axis of the cylinder.
Ue = ge (15)
After finding the primary axis of a cylinder, the estimated planar
surfaces can be generated on the top and bottom of a hollow cylinder.
By projecting the points of the curved surface onto the planar
surfaces, the radius and center point of the hollow cylinder can be
estimated. The radius of the circle is found using the same method
used in the solid cylinder algorithm. Consequently the final values of
the radius, center point, and primary axis are found by this fitting and
matching method using scanned data. See Figure 11 to Figure 14.

Samples Usts & Bugan Vertors

3

Figure 11. Scanned Points

@ T

Figure 12. Result of Fitting and Matching(1)

Sarmples Data & Eigen Vectors

Figure 14. Modeled Hollow Cylinders
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4.4 Sphere fitting and matching algorithm

To represent the boundary of a sphere, four points should be
measured by a laser range finder. The four points are generated from
two adjacent triangles on the surface of a sphere. Euclidian geometry
states that the perpendiculars to the plane of each triangle at their
centers of gravity pass through the center of sphere (see Figure 15).
Then, the radius and exact location in space of the center of the

sphere can be easily computed (see Figure 15).

Figure 15. Scanning and Modeling a Sphere Object

4.5 Conclusions and Experimental results

The fitting and matching algorithms discussed in this paper are an
integral part of a method that involves several other functions
including: human object recognition, collecting range information,
segmenting scanned points, and computing parameters resulting in
final fitting and matching for construction equipment operation and
as-built modeling. A key advantage of the method is that it
incorporates human cognitive ability to recognize and classify
objects in the workspace, that is, a human operator initiates scanning,
recognizes objects, and controls the system for data acquisition. In
addition, fitted and matched objects are verified by the operator and
then inserted into the workspace model and provides more rapid as-
built 3D models relatively faster than other traditional manual
measurement and design systems, they still require days or weeks for
the modeling process due to their data densities

Experiments were conducted to determine the efficiency of the
human assisted modeling method using real material such as 6, 8, 10,
12 inch-diameter pipe and boxes for construction material.. The
algorithms, which are based on the least squares method and PCA
method, were found to be useful for modeling construction objects of
cylindrical and cuboid shapes. They were applied to determine the
widths, depths, and heights of cuboids, and the diameters and lengths
of solid cylinders, including the locations and orientations.

Experiments were conducted using different numbers of scanned
points, various view angles, and various sizes of objects. Table 1

shows experimental results of the cuboid fitting and matching
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algorithms. Table 2 shows the results of hollow cylinder algorithm.
The algorithms tested yield approximately less than 2-degree angular
deviation between the model and the real object’s axis. In all tests the
size difference between the modeled and the actual object’s surfaces
was less than 5 %. For increased accuracy, further modifications of
the algorithms are required. In general, low deviation values and the
low modeling times in Table 1 and 2 indicate that a system based on
the above geometric algorithms and a human-guided simple laser
range finder can model construction objects rapidly and with
sufficient accuracy.

The approach taken in this research relies on a human’s cognitive
ability to recognize and classify objects in the workspace. Much
research has been conducted on automatic object recognition for
model! generation, but these methods are neither robust nor efficient
enough for real-time modeling in construction automation. The goal
here is to balance human discernment and efficient range data
acquisition with the proper exploitation of the computer in the areas
of model generation, interference checking and avoidance control.
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TABLE 1. EXPERIMENTAL RESULTS OF CUBOIDS

# of . Angle Angle Angle . Center . . . i
Pts Angle View (edge X) | (edgeY) | (edge 2) Time Difference diff. of width | diff. of length | diff. of depth
24 0 1.19 1.16 1.06 1.48 1.32 1.25 0.14 0.62
24 30 0.77 0.5 1.54 1.68 0.94 0.08 1.01 0.41
24 60 1.71 1.22 0.71 1.28 0.75 0.65 1.14 1.52
30 0 0.61 0.35 0.68 1.49 0.65 0.43 1.66 0.47
30 30 1.18 0.48 1.62 1.44 0.69 0.91 0.37 0.57
30 60 2.16 1.1 1.61 1.783 0.43 1.01 0.5 0.53
45 0 1.34 2.02 0.74 1.53 0.47 0.75 0.24 0.06
45 30 1.22 1.15 1.26 1.17 0.55 0.82 0.73 0.81
45 60 1.3 1.17 1.19 1.38 0.38 0.16 043 0.1
TABLE 2. EXPERIMENTAL RESULTS OF CYLINDER ALGORITHM
Mean of STDV. of Radius
#of
Points - - - /D=
1.0 1.5 2.0 2.5

1pts. | :0.746 0.19 0.18 0.12

20pts- 1 058 015 ] o016 0.12

0pts. 1 062 0.14

40pts. | 086 0.14
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