• 제목/요약/키워드: operator algebra

검색결과 139건 처리시간 0.018초

COMPACT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRA

  • Jo, Young-Soo;Kang, Joo-Ho
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.485-490
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$ , for i, = 1,2,…,n. In this article, we investigate compact interpolation problems in tridiagonal algebra : Given vectors x and y in a Hilbert space, when is there a compact operator A in a tridiagonal algebra such that Ax = y?

INTERPOLATION FOR HILBERT-SCHMIDT OPERATOR AND APPLICATION TO OPERATOR CORONA THEOREM

  • Kang, Joo-Ho;Ha, Dae-Yeon;Baik, Hyoung-Gu
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.341-347
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$, for i = 1,2…, n. In this paper, we investigate Hilbert-Schmidt interpolation problems in tridiagonal algebra by connecting the classical corona theorem.

GENERALIZED JENSEN'S EQUATIONS IN A HILBERT MODULE

  • An, Jong Su;Lee, Jung Rye;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • 제15권2호
    • /
    • pp.135-148
    • /
    • 2007
  • We prove the stability of generalized Jensen's equations in a Hilbert module over a unital $C^*$-algebra. This is applied to show the stability of a projection, a unitary operator, a self-adjoint operator, a normal operator, and an invertible operator in a Hilbert module over a unital $C^*$-algebra.

  • PDF

UNITARY INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Yong-Soo;Kang, Joo-Ho
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.207-213
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. An interpolating operator for n-vectors satisfies the equation Ax$_{i}$=y$_{i}$. for i=1,2, …, n. In this article, we investigate unitary interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H. Let x and y be vectors in H. When does there exist a unitary operator A in AlgL such that Ax=y?

INVERTIBLE INTERPOLATION PROBLEMS IN CSL-ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.359-365
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. In this article, we investigate invertible interpolation problems in CSL-Algebra AlgL : Let L be a commutative subspace lattice on a Hilbert space H and x and y be vectors in H. When does there exist an invertible operator A in AlgL suth that An = ㅛ?

AN IDENTITY ON STANDARD OPERATOR ALGEBRA

  • SHUJAT, FAIZA
    • Journal of applied mathematics & informatics
    • /
    • 제40권5_6호
    • /
    • pp.1129-1135
    • /
    • 2022
  • The purpose of this research is to find an extension of the renowned Chernoff theorem on standard operator algebra. Infact, we prove the following result: Let H be a real (or complex) Banach space and 𝓛(H) be the algebra of bounded linear operators on H. Let 𝓐(H) ⊂ 𝓛(H) be a standard operator algebra. Suppose that D : 𝓐(H) → 𝓛(H) is a linear mapping satisfying the relation D(AnBn) = D(An)Bn + AnD(Bn) for all A, B ∈ 𝓐(H). Then D is a linear derivation on 𝓐(H). In particular, D is continuous. We also present the limitations on such identity by an example.

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.

POSITIVE LINEAR OPERATORS IN C*-ALGEBRAS

  • Park, Choon-Kil;An, Jong-Su
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.1031-1040
    • /
    • 2009
  • It is shown that every almost positive linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a Banach *-algebra $\mathcal{A}$ to a Banach *-algebra $\mathcal{B}$ is a positive linear operator when h(rx) = rh(x) (r > 1) holds for all $x\in\mathcal{A}$, and that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ to a unital C*-algebra $\mathcal{B}$ is a positive linear operator when h($2^nu*y$) = h($2^nu$)*h(y) holds for all unitaries $u\in \mathcal{A}$, all $y \in \mathcal{A}$, and all n = 0, 1, 2, ..., by using the Hyers-Ulam-Rassias stability of functional equations. Under a more weak condition than the condition as given above, we prove that every almost linear mapping h : $\mathcal{A}\rightarrow\mathcal{B}$ of a unital C*-algebra $\mathcal{A}$ A to a unital C*-algebra $\mathcal{B}$ is a positive linear operator. It is applied to investigate states, center states and center-valued traces.

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.