• Title/Summary/Keyword: operational stability

Search Result 341, Processing Time 0.028 seconds

A stability analysis of oil film on an adhesion-type oil skimmer (흡착식 유회수기 표면에 부착된 유막의 안정성 해석)

  • 현범수;김장환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 1997
  • To determine an operational condition of an adhesion-type oil skimmer, it is important to estimate the withdrawal rate for a given driving velocity of the skimmer and material properties of the oil. As a theoretical model for this problem the formation of an oil film on a vertically driven flat plate is investigated. The previous steady-state analysis made in the field of coating industry are reviewed. These studies have been made under the assumptions of small Reynolds and capillary number, which is adequate for coating process but not for oil skimming. An alternative analysis based on the linear stability theory is made. Comparisons with the experimental results reveal that the stability analysis gives a correct estimation of the withdrawal rate for high capillary number at which the previous theory losses its validity.

  • PDF

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

An approach to the coupled dynamics of small lead cooled fast reactors

  • Zarei, M.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1272-1278
    • /
    • 2019
  • A lumped kinetic modeling platform is developed to investigate the coupled nuclear/thermo-fluid features of the closed natural circulation loop in a low power lead cooled fast reactor. This coolant material serves a reliable choice with noticeable thermo-physical safety characteristics in terms of natural convection. Boussienesq approximation is resorted to appropriately reduce the governing partial differential equations (PDEs) for the fluid flow into a set of ordinary differential equations (ODEs). As a main contributing step, the coolant circulation speed is accordingly correlated to the loop operational power and temperature levels. Further temporal analysis and control synthesis activities may thus be carried out within a more consistent state space framework. Nyquist stability criterion is thereafter employed to carry out a sensitivity analysis for the system stability at various power and heat sink temperature levels and results confirm a widely stable natural circulation loop.

A Study on the Initial Stability Calculation of Small Vessels Using Deep Learning Based on the Form Parameter Method (Form Parameter 기법을 활용한 딥러닝 기반의 소형선박 초기복원성 계산에 관한 연구)

  • Dongkeun Lee;Sang-jin Oh;Chaeog Lim;Jin-uk Kim;Sung-chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.161-172
    • /
    • 2024
  • Approximately 89% of all capsizing accidents involve small vessels, and despite their relatively high accident rates, small vessels are not subject to ship stability regulations. Small vessels, where the provision of essential basic design documents for stability calculations is omitted, face challenges in directly calculating their stability. In this study, considering that the majority of domestic coastal small vessels are of the Chine-type design, the goal is to establish the major hull form characteristic data of vessels, which can be identified from design documents such as the general arrangement drawing, as input data. Through the application of a deep learning approach, specifically a multilayer neural network structure, we aim to infer hydrostatic curves, operational draft ranges, and more. The ultimate goal is to confirm the possibility of directly calculating the initial stability of small vessels.

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Immobilization of $\beta$-glucosidase and properties of Immobilized Enzyme ($\beta$-glucosidase의 고정화와 효소 반응특성)

  • 정의준;이상호이용현
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.141-149
    • /
    • 1990
  • $\beta$-glucosidase derived from Aspergillus niger was immobilized by (1) covalent linkage on chitin and chitosan with glutaraldehyde, (2) adsorption on DEAE-cellulose and Amberite IRA93 after succinylation, and (3) entrapment on alginate and polyacrylamide gels with various cross linking agents. The retention yield of $\beta$-glucosidase immobilized on chitosan was 31.5% and operational stability was 69% after continuous operation at column reactor(5$0^{\circ}C$ at pH 4.8) for 15 days. The retention yield and operational stability were 24.7% and 60% respectively, in adsorption on Amberite IRA 93. On the other hand, the entrapment method by alginate and polyacrylamide gel was identified to be not appropriate due to the continuous elution of inlmobilized $\beta$-glucosidase. Optimum conditions for the immobilization on chitosan were also studied with optimum pH of 4.8 and glutaraldehyde concentration of 0.4%(w/v). The properties and stability of immobilized $\beta$-glucosidase are also investigted. The conversion yield of cellobiose to glucose was also analyzed using the column type enzyme reactor to evaluate the effectiveness of immobilized enzyme.

  • PDF

Dynamic Operational Strategies of UPFC in the KEPCO Transmission System

  • Chang, B.H.;Choo, J.B.;Lima, Leonardo T.G.;Feltes, James W.
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.168-176
    • /
    • 2003
  • The Korea Electric Power Corporation (KEPCO) has installed an 80 MY A Unified Power Flow Controller (UPFC) at its 154㎸ 'Kang-Jin Substation in South Korea. The device, manufactured by Siemens & Hyusung, has been operational since October 2002. The Korea Electric Power Research Institute (KEPRI), a division of KEPCO was tasked to study operational strategies that could be employed for the UPFC and surrounding reactive support devices concerning problems of low voltages and overloads in the Mokpo & Gwangju areas. Particular apprehension surrounded the possibility of delay in the installation of a new 345㎸ transmission line from 2005 to beyond 2010. The studies were to specifically determine whether these problems could be eliminated by application of a UPFC. The analysis included determining the UPFC operating point under various conditions, investigations of the coordination between the UPFC and a HYDC line terminating in this area, and the design of a supplementary damping controller for the UFPC. This paper summarizes the results of those studies, demonstrating the dynamic characteristics of the operation of this UPFC operation in the Korean power system.

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Comparison of the Operational Speed of Hard-wired and IEC 61850 Standard-based Implementations of a Reverse Blocking Protection Scheme

  • Mnguni, Mkhululi Elvis Siyanda;Tzoneva, Raynitchka
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.740-754
    • /
    • 2015
  • This paper focuses on the reverse blocking busbar protection scheme with aim to improve the speed of its operation and at the same time to increase operational reliability, flexibility and stability of the protection during external and internal faults by implementation of the extended functionality provided by the IEC61850 standard-based protective Intelligent Electronic Devices (IEDs). The practical implementation of the scheme by the use of IEC 61850 standard communication protocol is investigated. The proposed scheme is designed for a radial type of a distribution network and is modeled and simulated in the DigSILENT software environment for various faults on the busbar and its outgoing feeders. A laboratory test bench is built using three ABB IEDs 670 series that are compliant with the IEC 61850 standard, CMC 356 Omicron test injection device, PC, MOXA switch, and a DC power supplier. Two types of the reverse blocking signals between the IEDs in the test bench are considered: hard wired and Ethernet communication by using IEC 61850 standard GOOSE messages. Comparative experimental study of the operational trip response speeds of the two implementations for various traffic conditions of the communication network shows that the performance of the protection scheme for the case of Ethernet IEC 61850 standard-based communication is better.

Present and Growth Strategy of the International Journal of Industrial Distribution & Business

  • Suh, Eung-Kyo;Shin, Dong-Jin
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.4
    • /
    • pp.37-42
    • /
    • 2018
  • Purpose - The purpose of this study is to analyze the current status of various fusion research journals and the operational strategies of such journals and compare them with the operational strategies of IJIDB. Research design, data, and methodology - This study focused on the contents analysis of convergence journals after summarizing the development history from IJIDB's past and its external situation. In addition, we analyzed other strategies such as the number of publication journals, the number of publications, the academic scope, and the impact factor that other convergence journals operate on. Results - As a result of the analysis, the convergent journals showed to have several related journals, and some journals managed their impact factor well at 5.8. Also, some journals loaded 25 papers in one volume. Also, the managerial functions in IJIDB should be developed further to increase its stability. Finally, opportunities for articles by Candidates of Ph.D. and Masters degree students should be more open to in this field. Conclusions - If IJIDB finds its competitiveness in comparison with the operational strategies of other convergence journals, it will be the best journal in the Korea Citation Index to receive the most research papers and hospitality from scholars in the Korean journals.