Browse > Article
http://dx.doi.org/10.31613/ceramist.2020.23.2.04

Inorganic charge transport materials for high reliable perovskite solar cells  

Park, So Jeong (Department of Materials Science & Engineering, Seoul National University)
Ji, Su Geun (Department of Materials Science & Engineering, Seoul National University)
Kim, Jin Young (Department of Materials Science & Engineering, Seoul National University)
Publication Information
Ceramist / v.23, no.2, 2020 , pp. 145-165 More about this Journal
Abstract
Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.
Keywords
perovskite solar cell; inorganic hole transport layer; inorganic electron transport layer; high reliability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chu, S. et al. Atomic-layer-deposited ultrathin VOx film as a hole transport layer for perovskite solar cells. Semicond. Sci. Technol., 33, 115016, doi:10.1088/1361-6641/aae071 (2018).   DOI
2 Raiford, J. A. et al. Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n-i-p perovskite solar cells for tandems. Sustainable Energy Fuels, 3, 1517-1525, doi:10.1039/C9SE00081J (2019).   DOI
3 Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348, 1234, doi:10.1126/science.aaa9272 (2015).   DOI
4 Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511-515, doi:10.1038/s41586-019-1036-3 (2019).   DOI
5 Jeon, N. J. et al. A fluorene-terminated holetransporting material for highly efficient and stable perovskite solar cells. Nat. Energy, 3, 682-689, doi:10.1038/s41560-018-0200-6 (2018).   DOI
6 Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354, 206, doi:10.1126/science.aah5557 (2016).   DOI
7 Tan, H. et al. Efficient and stable solutionprocessed planar perovskite solar cells via contact passivation. Science 355, 722, doi:10.1126/science.aai9081 (2017).   DOI
8 Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized $TiO_2$ with mesosuperstructured organometal tri-halide perovskite solar cells. Nat. Commun., 4, 2885, doi:10.1038/ncomms3885 (2013).   DOI
9 Pathak, S. K. et al. Performance and Stability Enhancement of Dye-Sensitized and Perovskite Solar Cells by Al Doping of TiO2. Adv. Funct. Mater. 24, 6046-6055, doi:10.1002/adfm.201401658 (2014).   DOI
10 Roose, B. et al. Enhanced Efficiency and Stability of Perovskite Solar Cells Through Nd-Doping of Mesostructured TiO2. Adv. Funct. Mater., 6, 1501868, doi:10.1002/aenm.201501868 (2016).
11 Chen, T.-P. et al. Self-Assembly Atomic Stacking Transport Layer of 2D Layered Titania for Perovskite Solar Cells with Extended UV Stability. Adv. Energy Mater., 8, 1701722, doi:10.1002/aenm.201701722 (2018).   DOI
12 Zhang, Y. et al. Dopamine-crosslinked TiO2/perovskite layer for efficient and photostable perovskite solar cells under full spectral continuous illumination. Nano Energy, 56, 733-740, doi:https://doi.org/10.1016/j.nanoen.2018.11.068 (2019).   DOI
13 Hu, W. et al. Low-Temperature In Situ Amino Functionalization of TiO2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. Adv. Mater., 31, 1806095, doi:10.1002/adma.201806095 (2019).   DOI
14 Chen, H. et al. Efficient Bifacial Passivation with Crosslinked Thioctic Acid for High-Performance Methylammonium Lead Iodide Perovskite Solar Cells. Adv. Mater., 32, 1905661, doi:10.1002/adma.201905661 (2020).   DOI
15 Zhu, L. F. et al. Efficient perovskite solar cells via simple interfacial modification toward a mesoporous TiO2 electron transportation layer. RSC Adv., 6, 82282-82288, doi:10.1039/C6RA16839F (2016).   DOI
16 Fan, L. et al. Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 27, 561-568, doi:https://doi.org/10.1016/j.nanoen.2016.08.001 (2016).   DOI
17 Lv, Y. et al. Low-Temperature Atomic Layer Deposition of Metal Oxide Layers for Perovskite Solar Cells with High Efficiency and Stability under Harsh Environmental Conditions. ACS Appl. Mater. Interfaces, 10, 23928-23937, doi:10.1021/acsami.8b07346 (2018).   DOI
18 You, S. et al. A Biopolymer Heparin Sodium Interlayer Anchoring TiO2 and MAPbI3 Enhances Trap Passivation and Device Stability in Perovskite Solar Cells. Adv. Mater., 30, e1706924, doi:10.1002/adma.201706924 (2018).
19 Li, Y. et al. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. J. Am. Chem. Soc., 137, 15540-15547, doi:10.1021/jacs.5b10614 (2015).   DOI
20 Hailegnaw, B. et al. Inverted (p-i-n) perovskite solar cells using a low temperature processed TiOx interlayer. RSC Adv., 8, 24836-24846, doi:10.1039/C8RA03993C (2018).   DOI
21 Jiang, Q., Zhang, X. & You, J. SnO2: A Wonderful Electron Transport Layer for Perovskite Solar Cells. Small, 14, 1801154, doi:10.1002/smll.201801154 (2018).   DOI
22 Lee, J. - W. et al. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. J. Am. Chem. Soc., 140, 6317-6324, doi:10.1021/jacs.8b01037 (2018).   DOI
23 Abuhelaiqa, M. et al. Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy Environ. Sci., 12, 1910-1917, doi:10.1039/C9EE00453J (2019).   DOI
24 Jiang, Q. et al. Enhanced electron extraction using SnO < SUB > 2 < / SUB > for high -efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy, 2, 16177 (2017).   DOI
25 Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460-466, doi:10.1038/s41566-019-0398-2 (2019).   DOI
26 Yang, D. et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun., 9, 3239, doi:10.1038/s41467-018-05760-x (2018).   DOI
27 Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci., 9, 3128-3134, doi:10.1039/C6EE02390H (2016).   DOI
28 Lee, Y. et al. Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer. Adv. Sci., 5, 1800130, doi:10.1002/advs.201800130 (2018).   DOI
29 Christians, J. A. et al. Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nat. Energy , 3, 68-74, doi:10.1038/s41560-017-0067-y (2018).   DOI
30 Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 363, 265, doi:10.1126/science.aau5701 (2019).   DOI
31 Wang, R. et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule, 3, 1464-1477, doi : https://doi.org/10.1016/j.joule.2019.04.005 (2019).   DOI
32 Cao, T. et al. Fullerene Derivative-Modified SnO2 Electron Transport Layer for Highly Efficient Perovskite Solar Cells with Efficiency over 21%. ACS Appl. Mater. Interfaces, 11, 33825-33834, doi:10.1021/acsami.9b09238 (2019).   DOI
33 Zuo, L. et al. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Lett., 17, 269-275, doi:10.1021/acs.nanolett.6b04015 (2017).   DOI
34 Wang, J., Datta, K., Weijtens, C. H. L., Wienk, M. M. & Janssen, R. A. J. Insights into Fullerene Passivation of SnO2 Electron Transport Layers in Perovskite Solar Cells. Adv. Funct. Mater., 29, 1905883, doi:10.1002/adfm.201905883 (2019).   DOI
35 Hill, R. B. M. et al. Phosphonic Acid Modification of the Electron Selective Contact: Interfacial Effects in Perovskite Solar Cells. ACS Appl. Energy Mater., 2, 2402-2408, doi:10.1021/acsaem.9b00141 (2019).   DOI
36 Hou, M. et al. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer. ACS Appl. Mater. Interfaces, 10, 30607-30613, doi:10.1021/acsami.8b10332 (2018).   DOI
37 Tu, B. et al. Novel Molecular Doping Mechanism for n-Doping of SnO2 via Triphenylphosphine Oxide and Its Effect on Perovskite Solar Cells. Adv. Mater., 31, 1805944, doi:10.1002/adma.201805944 (2019).   DOI
38 Park, S. Y. et al. Simultaneous Ligand Exchange Fabrication of Flexible Perovskite Solar Cells using Newly Synthesized Uniform Tin Oxide Quantum Dots. J. Phys..Chem. Lett., 9, 5460-5467, doi:10.1021/acs.jpclett.8b02408 (2018).   DOI
39 Liu, C. et al. Hydrothermally Treated SnO2 as the Electron Transport Layer in High-Efficiency Flexible Perovskite Solar Cells with a Certificated Efficiency of 17.3%. Adv. Funct. Mater., 29, 1807604, doi:10.1002/adfm.201807604 (2019).   DOI
40 Ai, Y. et al. SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells. Sol. Energy, 194, 541-547, doi:https://doi.org/10.1016/j.solener.2019.11.004 (2019).   DOI
41 Brinkmann, K. O. et al. Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat. Commun., 8, 13938, doi:10.1038/ncomms13938 (2017).   DOI
42 Jiang, E. et al. Phosphate-Passivated SnO2 Electron Transport Layer for High-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 11, 36727-36734, doi:10.1021/acsami.9b11817 (2019).   DOI
43 Luan, Y. et al. High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis Using 2,2,2-Trifluoroethanol-Incorporated SnO2. iScience, 16, 433-441, doi:10.1016/j.isci.2019.06.004 (2019).   DOI
44 Zhu, Z. et al. Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron-Transporting Layer. Adv Mater., 28, 6478-6484, doi:10.1002/adma.201600619 (2016).   DOI
45 Hoffmann, L. et al. Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability. ACS Appl. Mater. Interfaces, 10, 6006-6013, doi:10.1021/acsami.7b17701 (2018).   DOI
46 Shin, S. S. et al. Colloidally prepared La - doped BaSnO< ; sub & gt ; 3 & lt ; /sub> electrodes for efficient, photostable perovskite solar cells. Science, 356, 167, doi:10.1126/science.aam6620 (2017).   DOI
47 Jiang, T. & Fu, W. Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers. RSC Adv., 8, 5897-5901, doi:10.1039/C8RA00248G (2018).   DOI
48 Chiang, Y.-H. et al. Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. J. Mater. Chem. A, 5, 25485-25493, doi:10.1039/C7TA07775K (2017).   DOI
49 You, J. et al. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol., 11, 75-81, doi:10.1038/nnano.2015.230 (2016).   DOI
50 Fang, R. et al. [6,6]-Phenyl-C61-Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite
51 Park, I. J. et al. New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p-i-n Geometry. J. Phys. Chem. C, 119, 27285-27290, doi:10.1021/acs.jpcc.5b09322 (2015).   DOI
52 Wu, Y. et al. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm(2) achieved by Additive Engineering. Adv. Mater,. (Deerfield Beach, Fla.) 29, doi:10.1002/adma.201701073 (2017).
53 NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: April 2020).
54 Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science, 358, 739-744, doi:10.1126/science.aam6323 (2017).   DOI
55 Xie, F. et al. Vertical recrystallization for highly efficient and stable formamidiniumbased inverted-structure perovskite solar cells. Energy Environ. Sci., 10, 1942-1949, doi:10.1039/C7EE01675A (2017).   DOI
56 Chen, W. et al. Efficient and stable largearea perovskite solar cells with inorganic charge extraction layers. Science, 350, 944, doi:10.1126/science.aad1015 (2015).   DOI
57 Park, I. J. et al. Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. ChemSusChem, 10, 2660-2667, doi:10.1002/cssc.201700612 (2017).   DOI
58 Yan, X. et al. Optimization of sputtering NiOx films for perovskite solar cell applications. Mater. Res. Bull., 103, 150-157, doi:10.1016/j.materresbull.2018.03.027 (2018).   DOI
59 Pae, S. R. et al. Improving Uniformity and Reproducibility of Hybrid Perovskite Solar Cells via a Low-Temperature Vacuum Deposition Process for NiOx Hole Transport Layers. ACS Appl. Mater. Interfaces, 10, 534-540, doi:10.1021/acsami.7b14499 (2018).   DOI
60 Abzieher, T. et al. Electron-Beam-Evaporated Nickel Oxide Hole Transport Layers for Perovskite-Based Photovoltaics. Adv. Energy Mater., 9, 1802995, doi:10.1002/aenm.201802995 (2019).   DOI
61 Seo, S. et al. An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. Nanoscale 8, 11403-11412, doi:10.1039/C6NR01601D (2016).   DOI
62 Seo, S., Jeong, S., Bae, C., Park, N.-G. & Shin, H. Perovskite Solar Cells with Inorganic Electron- and Hole-Transport Layers Exhibiting Long-Term (${\approx}500h$) Stability at $85^{\circ}C$ under Continuous 1 Sun Illumination in Ambient Air. Adv. Mater., 30, 1801010, doi:10.1002/adma.201801010 (2018).   DOI
63 Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. & Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci., 8, 1602-1608, doi:10.1039/C5EE00120J (2015).   DOI
64 Jorgensen, M., Norrman, K. & Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells, 92, 686-714, doi:https://doi.org/10.1016/j.solmat.2008.01.005 (2008).   DOI
65 Kim, J. H. et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solutionprocessed copper-doped nickel oxide holetransporting layer. Adv. Mater., 27, 695-701, doi:10.1002/adma.201404189 (2015).   DOI
66 Jung, J. W., Chueh, C. C. & Jen, A. K. A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Adv. Mater., 27, 7874-7880, doi:10.1002/adma.201503298 (2015).   DOI
67 Li, G. et al. Overcoming the Limitations of Sputtered Nickel Oxide for High-Efficiency and Large-Area Perovskite Solar Cells. Adv. Sci., (Weinh) 4, 1700463, doi:10.1002/advs.201700463 (2017).   DOI
68 Xie, Y. et al. Enhancing Photovoltaic Performance of Inverted Planar Perovskite Solar Cells by Cobalt-Doped Nickel Oxide Hole Transport Layer. ACS Appl. Mater. Interfaces, 10, 14153-14159, doi: 10.1021/acsami.8b01683 (2018).   DOI
69 Chen, W. et al. Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells. Adv. Energy Mater., 7, 1700722, doi:10.1002/aenm.201700722 (2017).   DOI
70 Wei, Y. et al. Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Appl. Surf. Sci., 427, 782-790, doi:https://doi.org/10.1016/j.apsusc.2017.08.184 (2018).   DOI
71 Chen, W. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 350, 944-948, doi:10.1126/science.aad1015 (2015).   DOI
72 Qiu, Z. et al. Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency. J. Mater. Chem. C, 5, 7084-7094, doi:10.1039/C7TC01224A (2017).   DOI
73 Cao, J. et al. Low-temperature solutionprocessed NiOx films for air-stable perovskite solar cells. J. Mater. Chem. A, 5, 11071-11077, doi:10.1039/C7TA02228J (2017).   DOI
74 Liu, Z. et al. Nickel oxide nanoparticles for efficient hole transport in p-i-n and n-i-p perovskite solar cells. J. Mater. Chem. A, 5, 6597-6605, doi:10.1039/C7TA01593C (2017).   DOI
75 Tirado, J. et al. Air-Stable n-i-p Planar Perovskite Solar Cells Using Nickel Oxide Nanocrystals as Sole Hole-Transporting Material. ACS Appl. Energy Mater., 2, 4890-4899, doi:10.1021/acsaem.9b00603 (2019).   DOI
76 Li, R. et al. NiOx/Spiro Hole Transport Bilayers for Stable Perovskite Solar Cells with Efficiency Exceeding 21%. ACS Energy Lett., 5, 79-86, doi:10.1021/acsenergylett.9b02112 (2020).   DOI
77 Park, I. J. et al. Highly Efficient and Uniform 1 cm(2) Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. ChemSusChem, 10, 2660-2667, doi:10.1002/cssc.201700612 (2017).   DOI
78 He, J. et al. Ligand-Free, Highly Dispersed NiOx Nanocrystal for Efficient, Stable, Low-Temperature Processable Perovskite Solar Cells. Sol. RRL, 2, 1800004, doi:10.1002/solr.201800004 (2018).   DOI
79 Jaffe, J. E. et al. Electronic and Defect Structures of CuSCN. J. Phys. Chem. C, 114, 9111-9117, doi:10.1021/jp101586q (2010).   DOI
80 Qin, P. et al. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat. Commun., 5, 3834, doi:10.1038/ncomms4834 (2014).   DOI
81 Ye, S. et al. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett., 15, 3723-3728, doi:10.1021/acs.nanolett.5b00116 (2015).   DOI
82 Wijeyasinghe, N. et al. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Adv. Funct. Mater., 27, 1701818, doi:10.1002/adfm.201701818 (2017).   DOI
83 Zuo, C. & Ding, L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 11, 5528-5532, doi:10.1002/smll.201501330 (2015).   DOI
84 Liu, J. et al. Identification and Mitigation of a Critical Interfacial Instability in Perovskite Solar Cells Employing Copper Thiocyanate Hole-Transporter. Adv. Mater. Interfaces, 3, 1600571, doi:10.1002/admi.201600571 (2016).   DOI
85 Jung, M. et al. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. ChemSusChem, 9, 2592-2596, doi:10.1002/cssc.201600957 (2016).   DOI
86 Arora, N. et al. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science, 358, 768, doi:10.1126/science.aam5655 (2017).   DOI
87 Li, B. S., Akimoto, K. & Shen, A. Growth of Cu2O thin films with high hole mobility by introducing a low-temperature buffer layer. J. Cryst. Growth, 311, 1102-1105, doi:https://doi.org/10.1016/j.jcrysgro.2008.11.038 (2009).   DOI
88 Rao, H. et al. A 19.0% efficiency achieved in CuOx-based inverted CH3NH3PbI3-xClx solar cells by an effective Cl doping method. Nano Energy, 27, 51-57, doi:https://doi.org/10.1016/j.nanoen.2016.06.044 (2016).   DOI
89 Sun, W. et al. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale, 8, 10806-10813, doi:10.1039/C6NR01927G (2016).   DOI
90 Wong, K. S. T., Zhuk, S., Masudy-Panah, S. & Dalapati, K. G. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells. Materials, 9, doi:10.3390/ma9040271 (2016).
91 Akin, S. et al. Hydrothermally processed CuCrO2 nanoparticles as an inorganic hole transporting material for low-cost perovskite solar cells with superior stability. J. Mater. Chem. A, 6, 20327-20337, doi:10.1039/C8TA07368F (2018).   DOI
92 Guo, Y., Lei, H., Xiong, L., Li, B. & Fang, G. An integrated organic-inorganic hole transport layer for efficient and stable perovskite solar cells. J. Mater. Chem. A, 6, 2157-2165, doi:10.1039/C7TA09946K (2018).   DOI
93 Nejand, B. A., Ahmadi, V., Gharibzadeh, S. & Shahverdi, H. R. Cuprous Oxide as a Potential Low-Cost Hole-Transport Material for Stable Perovskite Solar Cells. ChemSusChem, 9, 302-313, doi:10.1002/cssc.201501273 (2016).   DOI
94 Han, G. et al. Nitrogen doped cuprous oxide as low cost hole-transporting material for perovskite solar cells. Scr. Mater., 153, 104-108, doi:https://doi.org/10.1016/j.scriptamat.2018.04.049 (2018).   DOI
95 Qin, P.-L. et al. High-Performance Rigid and Flexible Perovskite Solar Cells with Low-Temperature Solution-Processable Binary Metal Oxide Hole-Transporting Materials. Sol. RRL, 1, 1700058, doi:10.1002/solr.201700058 (2017).   DOI
96 Chen, Y. et al. Thermal lystable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy, 61, doi:10.1016/j.nanoen.2019.04.042 (2019).
97 Zhang, H. et al. Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Adv. Energy Mater., 8, 1702762, doi:10.1002/aenm.201702762 (2018).   DOI
98 Yang, B. et al. Multifunctional Synthesis Approach of In:CuCrO2 Nanoparticles for Hole Transport Layer in High-Performance Perovskite Solar Cells. Adv. Funct. Mater., 29, 1902600, doi:10.1002/adfm.201902600 (2019).   DOI
99 Zhang, H., Wang, H., Chen, W. & Jen, A. K. Y. CuGaO2: A Promising Inorganic Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Adv. Mater., 29, 1604984, doi:10.1002/adma.201604984 (2017).   DOI
100 Chen, Y. et al. Thermallystable methylammonium-free inverted perovskite solar cells with $Zn^{2+}$ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy, 61, 148-157, doi:https://doi.org/10.1016/j.nanoen.2019.04.042 (2019).   DOI
101 Tseng, Z. L. et al. Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers. Sol. Energy, 139, 484-488, doi:10.1016/j.solener.2016.10.005 (2016).   DOI
102 Yang, Y. et al. Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%. Nano Energy, 48, 10-19, doi: https://doi.org/10.1016/j.nanoen.2018.03.046 (2018).   DOI
103 Sanehira, E. M. et al. Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection. ACS Energy Lett., 1, 38-45, doi:10.1021/acsenergylett.6b00013 (2016).   DOI
104 Lee, K.-M. et al. Highly efficient and stable semi-transparent perovskite solar modules with a trilayer anode electrode. Nanoscale, 10, 17699-17704, doi:10.1039/C8NR06095A (2018).   DOI
105 Sun, H. et al. Low-temperature solutionprocessed p-type vanadium oxide for perovskite solar cells. Chem. Commun., 52, 8099-8102, doi:10.1039/C6CC03740B (2016).   DOI
106 Guo, Q. et al. Low-temperature solutionprocessed vanadium oxide as hole transport layer for efficient and stable perovskite solar cells. Phys. Chem. Chem. Phys., 20, 21746-21754, doi:10.1039/c8cp03223h (2018).   DOI