• 제목/요약/키워드: operational matrix

검색결과 128건 처리시간 0.026초

OPERATIONAL IDENTITIES FOR HERMITE-PSEUDO LAGUERRE TYPE MATRIX POLYNOMIALS AND THEIR APPLICATIONS

  • Bin-Saad, Maged G.;Pathan, M.A.
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.35-49
    • /
    • 2019
  • In this work, it is shown that the combination of operational techniques and the use of the principle of quasi-monomiality can be a very useful tool for a more general insight into the theory of matrix polynomials and for their extension. We explore the formal properties of the operational rules to derive a number of properties of certain class of matrix polynomials and discuss the operational links with various known matrix polynomials.

보간법을 이용한 블록펄스 함수에 대한 새로운 적분 연산행렬의 유도 (The New Integral Operational Matrix of Block Pulse Function using Interpolation Method)

  • 조영호;신승권;이한석;안두수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.753-759
    • /
    • 1999
  • BPF(block pulse function) has been used widely in the system analysis and controller design. The integral operational matrix of BPF converts the system represented in the form of the differential equation into the algebraic problem. Therefore, it is important to reduce the error caused by the integral operational matrix. In this paper, a new integral operational matrix is derived from the approximating function using Lagrange's interpolation formula. Comparing the proposed integral operational matrix with another, the result by proposed matrix is closer to the real value than that by the conventional matrix. The usefulness of th proposed method is also verified by numerical examples.

  • PDF

하알함수 미분연산형렬의 유도와 시스템해석으로의 응용 (Operational matrix for differentiation of Haar function and its application for systems and control)

  • 안비오;강기원;깅민형;김종부
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2200-2202
    • /
    • 2003
  • In this paper, differentiation operational matrix for Haar function is derived. Proposed method only using a matrix calculation of Haar discrete matrix and block-pulse function's integration operational matrix. It would be possible to use to design an a1gebraic estimator for fault detection or unknown input observer effectively.

  • PDF

신뢰성-비용 매트릭스를 이용한 항공전자장비의 신뢰성 평가 및 개선 프로세스 연구 (A Study on Reliability Evaluation and Improvement Process of Aerospace Electronic Equipments using Operational Reliability-Cost Matrix)

  • 조인탁;이상천;박종훈;배성문
    • 품질경영학회지
    • /
    • 제42권4호
    • /
    • pp.633-646
    • /
    • 2014
  • Purpose: The conventional predicted MFTBF by military standard has a wide discrepancy to that of real-world operation, which leads to overstock and increase operation cost. This paper introduces a analyzing frame using operational reliability and cost data to overcome the discrepancy, and provides reliability improvement process employing the analyzing frame. Methods: This paper suggests Reliability-Cost Matrix (R-C Matrix) and Operational Reliability & Cost Index (ORCI) as a tool for reliability evaluation. Results: KOREIP(KAI's Operational Reliability Evaluation and Improvement Process) is developed employing Reliability-Cost Matrix and Operational Reliability & Cost Index. Conclusion: KOREIP provides a process and its activities based on Reliability-Cost Matrix frame. The process and activities leads reliability improvement of aerospace electronic equipments by means of categorizing and follow-up action based on the concept of frame.

블록펄스 함수의 새로운 적분연산 행렬을 이용한 선형 시변계의 해석 (Analysis of Time-Varying Linear System Using the New Integral Operational Matrix via Block Pulse Functions)

  • 조영호;신승권;박정호;이한석;김재일;안두수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.755-757
    • /
    • 1999
  • The operational properties of BPF(block-pulse functions) are much applied to the analysis of time-varying linear systems. The integral operational matrix of BPF converts the systems in the form of the differential equation into the algebraic problems. But the errors caused by using the integral operational matrix make it difficult that we exactly analyze time-varying linear systems. So, in this paper, to analyze time-varying linear systems we had used the recursive algorithm derived from the new integral operational matrix. And the usefulness of the proposed method is verified by the example.

  • PDF

변위-변형율 변환행렬을 이용한 운전중 변형율 예측 및 응용 (Prediction of operational strains using displacement-strain transformation matrix and its application)

  • 서순우;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.355-360
    • /
    • 1996
  • When the operational strains of a structure can not be directly measured in order to predict the life of the structure due to the problem of the attachment, those must be obtained indirectly. Since the displacement and the strain are interrelated, the strain can be predicted from the measured displacement and displacement-strain transformation matrix. The transformation matrix is dependent on the boundary condition, unfortunately, and it is also difficult to know exactly that of the operational system. In this study, for the structure with arbitrary boundary condition under the operation, the approximate method is proposed in order to predict the operational strains using the transformation matrix obtained by using free boundary conditions. And the method is applied to predict the strains of leads of surface mount component under the vibration of the printed circuit board.

  • PDF

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어 (Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions)

  • 조영호;심재선
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

새로운 일반형 블럭 펄스 적분 연산 행렬을 이용한 선형 시불변 시스템 해석 (Analysis of Linear Time-invariant System by Using a New Block Pulse Operational Matrices)

  • 이해기;김태훈
    • 전기학회논문지P
    • /
    • 제53권4호
    • /
    • pp.175-182
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives generalized integration operational matrix and applied the matrix to the analysis of linear time-invariant system.