• Title/Summary/Keyword: operation Modes

Search Result 815, Processing Time 0.03 seconds

Development of a Test System for a Hemispherical Resonator and Control of Vibrating Pattern (반구형공진기 실험장치 개발과 진동패턴 제어)

  • Kim, Dongguk;Yoon, Hyungjoo;Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.813-819
    • /
    • 2013
  • The authors have developed a test system for a hemispherical resonator gyroscope by using NI FPGA equipment. We have verified its suitability for the research of resonator gyroscopes through several tests: deriving resonance, controlling amplitudes, and estimating resonator parameters. The authors have adjusted a vibrating pattern to be aligned with the driving axis (or electromagnets). This pattern alignment is a basic and important operation of the FTR mode, which is one of operating modes for resonant gyroscopes.

Induction Heated Load Resonant Tank High Frequency Inverter with Asymmetrical Auxiliary Active Edge-Resonant Soft-Switching Scheme

  • Saha Bishwajit;Fathy Khairy;Kwon Soon-Kurl;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.200-202
    • /
    • 2006
  • In this paper, a novel type of auxiliary active snubbing circuit assisted quasi-resonant soft-switching pulse width modulation inverter is proposed for consumer induction heating equipments. The operation principle of this high frequency inverter is described using switching modes and equivalent circuits. This newly developed series resonant high frequency inverter can regulate its high frequency output AC power under a principle of constant frequency active edge resonant soft-switching commutation by asymmetrical PWM control system. The high frequency power regulation and actual power conversion efficiency characteristics of consumer induction heating (IH) products using the proposed soft-switching pulse width modulation (PWM) series load resonant high frequency inverter evaluated. The practical effectiveness and operating performance of high frequency inverter are discussion on the basis of simulation and experimental results as compared with the conventional soft-switching high frequency inverter.

  • PDF

Single stage Boost Input Type Resonant AC/DC Converter (단일단 부스트 입력방식의 공진형 AC/DC 컨버터)

  • 연재을;정진범;김희준
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.65-72
    • /
    • 2004
  • This paper proposes the novel boost input type resonant AC/DC converter. Since the proposed converter is single stage topology, it controls both of the input power factor and the output voltage at the same time, and resultingly obtains the high power factor of 99% with average current mode pulse width modulation. Especially, to accomplish the zero voltage switching, the resonance between the leakage inductance and external capacitor is used. For the theoretical consideration of the proposed converter, the six operation modes divided by means of current path are discussed, and the resonance characteristics in steady state are analyzed. To verify the validity of the proposed converter, a 200[W]($120[V_AC],\; 출력\; 48[V_DC],\; 4[A]$prototype converter was built and its experimental results were presented in this paper.

Development of an Intelligent Charger with a Battery Diagnosis Function Using Online Impedance Spectroscopy

  • Nguyen, Thanh-Tuan;Doan, Van-Tuan;Lee, Geun-Hong;Kim, Hyung-Won;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1981-1989
    • /
    • 2016
  • Battery diagnosis is vital to battery-based applications because it ensures system reliability by avoiding battery failure. This paper presents a novel intelligent battery charger with an online diagnosis function to circumvent interruptions in system operation. The charger operates in normal charging and diagnosing modes. The diagnosis function is performed with the impedance spectroscopy technique, which is achieved by injecting a sinusoidal voltage excitation signal to the battery terminals without the need for additional hardware. The impedance spectrum of the battery is calculated based on voltage excitation and current response with the aid of an embedded digital lock in amplifier in a digital signal processor. The measured impedance data are utilized in the application of the complex nonlinear least squares method to extract the battery parameters of the equivalent circuit. These parameters are then compared with the reference values to reach a diagnosis. A prototype of the proposed charger is applied to four valve-regulated lead-acid batteries to measure AC impedance. The results are discussed.

A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery (전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어)

  • Kang, Taewon;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

Analyses of Failure Causes and an Experimental Study on the Opening Characteristics of Swing Check Valves (스윙형 역지밸브의 고장 원인 분석과 열림 특성에 관한 실험적 연구)

  • Song, Seok-Yoon;Yoo, Seong-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.6 s.33
    • /
    • pp.15-25
    • /
    • 2005
  • Check valves playa vital role in the operation and protection of nuclear power plants. Check valves failure in nuclear power plants often lead to a plant transient or trip. The analysis of historical failure data gives information on the populations of various types of check valves, the systems they are installed in, failure modes, effects, methods of detection, and the mechanisms of the failures. A majority of check valve failures are caused by improper application. The experimental apparatus is designed and installed to measure the disc positions with flow velocity, Vopen and Vmin for 3 inch and 6 inch swing check valves. The minimum flow velocity necessary to just open the disc at a full open position is referred to as Vopen, and Vmin is defined as the minimum velocity to fully open the disc and hold it without motion. In the experiments, Vmin is determined as the minimum flow velocity at which the back stop load begins to increase after the disc is fully opened or the oscillation level of disc is reduced below $1^{\circ}$. The results show that the Vmin velocities for 3 inch and 6 inch swing check valves are about 27.3% and 17.5% higher than the Vopen velocities, respectively.

Development and Validation of HAUSAT-2 Nanosatellite EPS (HAUSAT-2 위성의 전력계 개발 및 검증)

  • Kim, Dong-Un;Jang, Yeong-Geun;Mun, Byeong-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.89-101
    • /
    • 2006
  • This paper addresses Electrical Power Subsystem(EPS) design and verification of HAUSAT-2 small satellite through energy balance analysis(EBA) depending on individual operation modes. GaAs solar cells are used for satellite power generation and digital peak power tracking is implemented for EPS architecture. One battery pack is consisted of 4 Li-Ion cells. Battery charge is accomplished by peak power tracker and battery charge regulator. Power conditioning assembly uses three DC-DC converters, and power distribution assembly which consists of commercial IC and MOSFET switch distributes power to subsystems and payloads. The altitude of 650km and sun-synchronous LEO with various local time ascending node(LTAN) are considered in EBA.

Application of Lookup Table Technique with PID Controller for East Flow Ratio Response

  • Klaynil, P.;Pannil, P.;Chaikla, A.;Julsereewong, P.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.504-504
    • /
    • 2000
  • The flow ratio in the industrial process is usually accomplished by using PID controller with series type ratio. But always the large overshoot and a long rise time may be achieved from this conventional control. These problems are involved to the inexact flow ratio control. In order to avoid this poor performance. the paper presents a designing of the two controller modes for the flow ratio plants. This proposed controller combine the lookup table technique and the well-known PID controller to obtain the fast response and low overshoot of flow ratio control. The PID controller mode will be operated when the flow ratio reaches the preset value while the lookup table technique mode is applied for initial operation. The data in tile table is calculated by the valve sizing equation and convened to the valve position control signal. The experimental results show that the transient and steady state responses of the control systems using the proposed technique can be efficiently obtained when compared with tile conventional controller.

  • PDF

Springback Control of an Automotive Surround Molding Part Using Automatic Die Compensation Module (금형 자동 보정 방식을 이용한 자동차 서라운드 몰딩 부품의 스프링백 현상 제어)

  • Lee, D.Y.;Choi, B.S.;Hwang, J.H.;Baek, I.K.;Choi, K.Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.210-216
    • /
    • 2009
  • Springback, an elastic material recovery after the unloading of stamping tools, causes variations and inconsistencies of final part dimensions. Recently, narrow and long surround molding parts around door frame are applied to high grade automobiles, but there are great difficulties in their die development, construction and tryout because of several springback modes including vertical movement and twist during flange forming process of them. So it is very important to predict springback's quantities of a surround molding part and, moreover, to compensate the die for them adequately, when they can't be corrected by the restrike operation. This paper presents a case study based on the die design for a surround molding part made of stainless steel. The forming and springback predictions, carried out using PAMSTAMP 2G, are reported and compared with the measurement data of the prototype. The predicted springback results were acceptable, so the processes of compensating die using Automatic Die Compensation Module of PAMSTAMP 2G were performed iteratively until the tolerances between the designed shape and the simulation data were satisfied.

A Study on the High Efficiency Ground Source Heat Pump System (1) (부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1))

  • Koh, Deuk-Yong;Kim, Ook-Joong;Choi, Sang-Kyu;Chang, Ki-Chang
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF