• Title/Summary/Keyword: operating optimization

Search Result 970, Processing Time 0.029 seconds

A Simulation Study on SCR(Steam Carbon Dioxide Reforming) Process Optimization for Fischer-Tropsch Synthesis (Fischer-Tropsch 합성용 SCR(Steam Carbon Dioxide Reforming) 공정 최적화 연구)

  • Kim, Yong Heon;Koo, Kee Young;Song, In Kyu
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.700-704
    • /
    • 2009
  • A simulation study on SCR(steam carbon dioxide reforming) in gas-to-liquid(natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for SCR experiment. Optimum operating conditions for SCR process were determined by changing reaction variables such as temperature and $CH_4/steam/CO_2$ feed ratio. Simulation was carried out by Aspen Plus. During the simulation, overall process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS(Redlich-Kwong-Soave) equation. Optimum simulation variables such as temperature and feed ratio were determined by considering $H_2/CO$ ratio for FTS(Fischer-Tropsch synthesis), $CH_4$ conversion, and $CO_2$ conversion. Simulation results showed that optimum reaction temperature and $CH_4/steam/CO_2$ feed ratio in SCR process were $850^{\circ}C$ and 1.0/1.6/0.7, respectively. Under optimum temperature of $850^{\circ}C$, $CH_4$ conversion and $CO_2$ conversion were found to be 99% and 49%, respectively.

Development and Validation of Reservoir Operation Rules for Integrated Water Resources Management in the Geum River Basin (금강유역의 유역통합수자원관리를 위한 저수지 운영률 개발 및 적용성 검토)

  • Cheong, Tae-Sung;Kang, Sin-Uk;Hwang, Man-Ha;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.433-444
    • /
    • 2008
  • In recent, the integrated water resources management should consider not only existing management objects such as water supply, power generation, and instream flows but also new management objects such as water quantity, water quality, and water habitats which management system is large and complex. Moreover, integrated basin plan or operation are needed for solving conflicts problems between basins and between water usages and to maximize water resources usages. To increase use of optimization method for actual operation and apply various objects, a reservoir operation rule was developed and the KModSim's hydrologic states for integrated water resources management were tested in this study. The simulation results show that the developed operation rules applied in hydrologic states good represent the actual storages of both the Yongdam and the Daecheong Reservoirs so, it is possible to improve the water allocation method usually used in the basin management and manage the integrated basin water resources if new operating rules are applied in optimized programming.

Design and Environmental/Economic Performance Evaluation of Wastewater Treatment Plants Using Modeling Methodology (모델링 기법을 이용한 하수처리 공정 설계와 환경성 및 경제성 평가)

  • Kim, MinHan;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.610-618
    • /
    • 2008
  • It is not easy to compare the treatment processes and find an optimum operating condition by the experiments due to influent conditions, treatment processes, various operational conditions and complex factors in real wastewater treatment system and also need a lot of time and costs. In this paper, the activated sludge models are applied to four principal biological wastewater treatment processes, $A_2O$(anaerobic/anoxic/oxic process), Bardenpho(4 steps), VIP(Virginia Initiative Plant) and UCT(University of Cape Town), and are used to compare their environmental and economic assessment for four key processes. In order to evaluate each processes, a new assessment index which can compare the efficiency of treatment performances in various processes is proposed, which considers both environmental and economic cost. It shows that the proposed index can be used to select the optimum processes among the candidate treatment processes as well as to find the optimum condition in each process. And it can find the change of economic and environmental index under the changes of influent flowrate and aerobic reaction size and predict the optimum index under various operation conditions.

Optimal Design of Batch-Storage Network Including Uncertainty and Waste Treatment Processes (불확실한 공정과 불량품 처리체계를 포함하는 공정-저장조 망 최적설계)

  • Yi, Gyeongbeom;Lee, Euy-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.585-597
    • /
    • 2008
  • The aim of this study was to find an analytic solution to the problem of determining the optimal capacity (lot-size) of a batch-storage network to meet demand for a finished product in a system undergoing random failures of operating time and/or batch material. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to short-term random variations in the cycle time and batch size as well as long-term variations in the average trend. Some of the production processes have random variations in product quantity. The spoiled materials are treated through regeneration or waste disposal processes. All other processes have random variations only in the cycle time. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis, the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced.

Thermal Analysis of 3D package using TSV Interposer (TSV 인터포저 기술을 이용한 3D 패키지의 방열 해석)

  • Suh, Il-Woong;Lee, Mi-Kyoung;Kim, Ju-Hyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.43-51
    • /
    • 2014
  • In 3-dimensional (3D) integrated package, thermal management is one of the critical issues due to the high heat flux generated by stacked multi-functional chips in miniature packages. In this study, we used numerical simulation method to analyze the thermal behaviors, and investigated the thermal issues of 3D package using TSV (through-silicon-via) technology for mobile application. The 3D integrated package consists of up to 8 TSV memory chips and one logic chip with a interposer which has regularly embedded TSVs. Thermal performances and characteristics of glass and silicon interposers were compared. Thermal characteristics of logic and memory chips are also investigated. The effects of numbers of the stacked chip, size of the interposer and TSV via on the thermal behavior of 3D package were investigated. Numerical analysis of the junction temperature, thermal resistance, and heat flux for 3D TSV package was performed under normal operating and high performance operation conditions, respectively. Based on the simulation results, we proposed an effective integration scheme of the memory and logic chips to minimize the temperature rise of the package. The results will be useful of design optimization and provide a thermal design guideline for reliable and high performance 3D TSV package.

A VLSI Design of High Performance H.264 CAVLC Decoder Using Pipeline Stage Optimization (파이프라인 최적화를 통한 고성능 H.264 CAVLC 복호기의 VLSI 설계)

  • Lee, Byung-Yup;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.50-57
    • /
    • 2009
  • This paper proposes a VLSI architecture of CAVLC hardware decoder which is a tool eliminating statistical redundancy in H.264/AVC video compression. The previous CAVLC hardware decoder used four stages to decode five code symbols. The previous CAVLC hardware architectures decreased decoding performance because there was an unnecessary idle cycle in between state transitions. Likewise, the computation of valid bit length includes an unnecessary idle cycle. This paper proposes hardware architecture to eliminate the idle cycle efficiently. Two methods are applied to the architecture. One is a method which eliminates an unnecessary things of buffers storing decoded codes and then makes efficient pipeline architecture. The other one is a shifter control to simplify operations and controls in the process of calculating valid bit length. The experimental result shows that the proposed architecture needs only 89 cycle in average for one macroblock decoding. This architecture improves the performance by about 29% than previous designs. The synthesis result shows that the design achieves the maximum operating frequency at 140Mhz and the hardware cost is about 11.5K under a 0.18um CMOS process. Comparing with the previous design, it can achieve low-power operation because this design is implemented with high throughputs and low gate count.

A Study on the Optimal Installation of Ducted Fan Ventilation System in Long Mine Airways - Focused on the Wall Separation Distance and the Gap Length between Ducts (장대 광산갱도내 풍관 접속 통기선풍기 최적 설치 방안연구 - 벽면과 풍관간의 이격거리 중심으로)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.12-25
    • /
    • 2017
  • In local underground mines heavily depending on the natural ventilation, ducted fan auxiliary ventilation system is strongly recommended instead of the total mine ventilation system requiring large capital and operating costs. Optimizing the installation of ducted fans in series in long large-opening mines is required to assure the economy and efficiency of the ventilation system. The two most critical design parameters for optimization are the wall separation distance and gap length between adjoining ducts. This study aims at deriving the optimal values for those two parameters concerning the economic and environmental aspects through the extensive CFD analysis, which minimizes pressure loss, leakage and entrainment of the contaminated air in the gap space. The ranges of the wall separation distance and gap length for study are selected by taking into consideration the existing recommendations and guidelines. The ultimate goal is to optimize the auxiliary ventilation system using ducted fans in series to provide a reliable and efficient solution to maintain clean and safe workplace environment in local long underground mines.

Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier (2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구)

  • Seo, Dong-Kyun;Lee, Sun-Ki;Song, Soon-Ho;Hwang, Jung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

The Optimization of $0.5{\mu}m$ SONOS Flash Memory with Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터를 이용한 $0.5{\mu}m$ 급 SONOS 플래시 메모리 소자의 개발 및 최적화)

  • Kim, Sang Wan;Seo, Chang-Su;Park, Yu-Kyung;Jee, Sang-Yeop;Kim, Yun-Bin;Jung, Suk-Jin;Jeong, Min-Kyu;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook;Hwang, Cheol Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.111-121
    • /
    • 2012
  • In this paper, a poly-Si thin film transistor with ${\sim}0.5{\mu}m$ gate length was fabricated and its electrical characteristics are optimized. From the results, it was verified that making active region with larger grain size using low temperature annealing is an efficient way to enhance the subthreshold swing, drain-induced barrier lowering and on-current characteristics. A SONOS flash memory was fabricated using this poly-Si channel process and its performances are analyzed. It was necessary to optimize O/N/O thickness for the reduction of electron back tunneling and the enhancement of its memory operation. The optimized device showed 2.24 V of threshold voltage memory windows which coincided with a well operating flash memory.

Selection and optimization of nutritional risk screening tools for esophageal cancer patients in China

  • Dong, Wen;Liu, Xiguang;Zhu, Shunfang;Lu, Di;Cai, Kaican;Cai, Ruijun;Li, Qing;Zeng, Jingjing;Li, Mei
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Malnutrition has multiple impacts on surgical success, postoperative complications, duration of hospital stay, and costs, particularly for cancer patients. There are various nutrition risk screening tools available for clinical use. Herein, we aim to determine the most appropriate nutritional risk screening system for esophageal cancer (EC) patients in China. SUBJECTS/METHODS: In total, 138 EC patients were enrolled in this study and evaluated by experienced nurses using three different nutritional screening tools, the Nutrition Risk Screening 2002 tool (NRS2002), the Patient-generated Subjective Globe Assessment (PG-SGA), and the Nutrition Risk Index (NRI).We compared sensitivity, specificity, positive and negative likelihood ratios, and Youden index generated by each of the three screening tools. Finally, cut-off points for all three tools were re-defined to optimize and validate the best nutritional risk screening tool for assessing EC patients. RESULTS: Our data suggested that all three screening tools were 100% sensitive for EC patients, while the specificities were 44.4%, 2.96%, and 59.26% for NRS 2002, PG-SGA, and NRI, respectively. NRI had a higher positive likelihood ratio as well as a higher area under the receiver operating characteristic curve compared to those of NRS 2002 and PG-SGA; although, all three tools had null negative likelihood ratios. After adjusting the cut-off points, the specificity and accuracy for all tools were significantly improved, however, the NRI remained the most appropriate nutritional risk screening system for EC patients. CONCLUSIONS: The NRI is the most suitable (highest sensitivity and accuracy) nutritional risk screening tool for EC patients. The performance of the NRI can be significantly improved if the cut-off point is modified according to the results obtained using MedCalc software.