• Title/Summary/Keyword: open source cloud

Search Result 123, Processing Time 0.034 seconds

An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data (Landsat-8 OLI 영상정보의 대기 및 지표반사도 산출을 위한 OTB Extension 구현과 RadCalNet RVUS 자료를 이용한 성과검증)

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.449-461
    • /
    • 2021
  • Analysis Ready Data (ARD) for optical satellite images represents a pre-processed product by applying spectral characteristics and viewing parameters for each sensor. The atmospheric correction is one of the fundamental and complicated topics, which helps to produce Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance from multi-spectral image sets. Most remote sensing software provides algorithms or processing schemes dedicated to those corrections of the Landsat-8 OLI sensors. Furthermore, Google Earth Engine (GEE), provides direct access to Landsat reflectance products, USGS-based ARD (USGS-ARD), on the cloud environment. We implemented the Orfeo ToolBox (OTB) atmospheric correction extension, an open-source remote sensing software for manipulating and analyzing high-resolution satellite images. This is the first tool because OTB has not provided calibration modules for any Landsat sensors. Using this extension software, we conducted the absolute atmospheric correction on the Landsat-8 OLI images of Railroad Valley, United States (RVUS) to validate their reflectance products using reflectance data sets of RVUS in the RadCalNet portal. The results showed that the reflectance products using the OTB extension for Landsat revealed a difference by less than 5% compared to RadCalNet RVUS data. In addition, we performed a comparative analysis with reflectance products obtained from other open-source tools such as a QGIS semi-automatic classification plugin and SAGA, besides USGS-ARD products. The reflectance products by the OTB extension showed a high consistency to those of USGS-ARD within the acceptable level in the measurement data range of the RadCalNet RVUS, compared to those of the other two open-source tools. In this study, the verification of the atmospheric calibration processor in OTB extension was carried out, and it proved the application possibility for other satellite sensors in the Compact Advanced Satellite (CAS)-500 or new optical satellites.

A Study on Security Improvement in Hadoop Distributed File System Based on Kerberos (Kerberos 기반 하둡 분산 파일 시스템의 안전성 향상방안)

  • Park, So Hyeon;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.803-813
    • /
    • 2013
  • As the developments of smart devices and social network services, the amount of data has been exploding. The world is facing Big data era. For these reasons, the Big data processing technology which is a new technology that can handle such data has attracted much attention. One of the most representative technologies is Hadoop. Hadoop Distributed File System(HDFS) designed to run on commercial Linux server is an open source framework and can store many terabytes of data. The initial version of Hadoop did not consider security because it only focused on efficient Big data processing. As the number of users rapidly increases, a lot of sensitive data including personal information were stored on HDFS. So Hadoop announced a new version that introduces Kerberos and token system in 2009. However, this system is vulnerable to the replay attack, impersonation attack and other attacks. In this paper, we analyze these vulnerabilities of HDFS security and propose a new protocol which complements these vulnerabilities and maintains the performance of Hadoop.

Service Function Chaining Architecture for Distributed 5G Mobile Core Networks (분산 모바일 코어기반 5G 네트워크에서의 Service Function Chaining 적용구조)

  • Sun, Kyoungjae;Kim, Younghan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1914-1924
    • /
    • 2016
  • In this paper, considering virtualized Evolved Packet Core(vEPC) network for 5G mobile network, we propose architecture for supporting Service Function Chaining(SFC) in 5G mobile network. Using SFC in 5G network, dynamic path configuration and providing network services based on subscriber and traffic information. SFC technology provides logical ordered set of network functions and delivers packet through providing logical path over the physical network. Based on the perspective of 5G core network in distributed manner, we design hierarchical SFC architecture to manage SFC for global path including vEPC and SGi-LAN network, and internal path between virtualized network functions in each cloud. In this paper, we define architecture and call flow for establishing data path using SFC. Finally, we design testbed architecture for real implementation based on open source software.

Deep Learning Frameworks for Cervical Mobilization Based on Website Images

  • Choi, Wansuk;Heo, Seoyoon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.12 no.1
    • /
    • pp.2261-2266
    • /
    • 2021
  • Background: Deep learning related research works on website medical images have been actively conducted in the field of health care, however, articles related to the musculoskeletal system have been introduced insufficiently, deep learning-based studies on classifying orthopedic manual therapy images would also just be entered. Objectives: To create a deep learning model that categorizes cervical mobilization images and establish a web application to find out its clinical utility. Design: Research and development. Methods: Three types of cervical mobilization images (central posteroanterior (CPA) mobilization, unilateral posteroanterior (UPA) mobilization, and anteroposterior (AP) mobilization) were obtained using functions of 'Download All Images' and a web crawler. Unnecessary images were filtered from 'Auslogics Duplicate File Finder' to obtain the final 144 data (CPA=62, UPA=46, AP=36). Training classified into 3 classes was conducted in Teachable Machine. The next procedures, the trained model source was uploaded to the web application cloud integrated development environment (https://ide.goorm.io/) and the frame was built. The trained model was tested in three environments: Teachable Machine File Upload (TMFU), Teachable Machine Webcam (TMW), and Web Service webcam (WSW). Results: In three environments (TMFU, TMW, WSW), the accuracy of CPA mobilization images was 81-96%. The accuracy of the UPA mobilization image was 43~94%, and the accuracy deviation was greater than that of CPA. The accuracy of the AP mobilization image was 65-75%, and the deviation was not large compared to the other groups. In the three environments, the average accuracy of CPA was 92%, and the accuracy of UPA and AP was similar up to 70%. Conclusion: This study suggests that training of images of orthopedic manual therapy using machine learning open software is possible, and that web applications made using this training model can be used clinically.

An Analysis of Impact on the Quality of Life for Chronic Patients based Big Data (빅데이터 기반 만성질환자의 삶의 질에 미치는 영향분석)

  • Kim, Min-kyoung;Cho, Young-bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1351-1356
    • /
    • 2019
  • The purpose of this study is to investigate the effect of personal factors and community factors on the quality of life based on the presence of chronic patients based on the Big Data Platform. As a method of study, second data of 2017 community health survey and Statistics Korea by City·Gun·Gu public office were used and a multi-level analysis was conducted after separating EQ-5D index, individual factor and community factor. As a result, men, age, education level, monthly household income, having economic activity, the number of sports infrastructure were positively associated with the quality of life, and subjective health not good, extremely perceived stress were negatively associated with the quality of life. Research will continue to provide a platform independent of hardware that can utilize the cloud and open source for medical big data analysis in the future.

P2P Based Telemedicine System Using Thermographic Camera (열화상 카메라를 포함한 P2P 방식의 원격진료 시스템)

  • Kim, Kyoung Min;Ryu, Jae Hyun;Hong, Sung Jun;Kim, Hongjun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.3
    • /
    • pp.547-554
    • /
    • 2022
  • Recently, the field of telemedicine is growing rapidly due to the COVID-19 pandemic. However, the cost of telemedicine services is relatively high, since cloud computing, video conferencing, and cyber security should be considered. Therefore, in this paper, we design and implement a cost-effective P2P-based telemedicine system. It is implemented using the widely used the open source computing platform, Raspberry Pi, and P2P network that frees users from security problems such as the privacy leakage by the central server and DDoS attacks resulting from the server/client architecture and enables trustworthy identifying connection system using SSL protocol. Also it enables users to check the other party's status including body temperature in real time by installing a thermal imaging camera using Raspberry Pi. This allows several medical diagnoses that requires visual aids. The proposed telemedicine system will popularize telemedicine service and meet the ever-increasing demand for telemedicine.

A Study on Implementation of Human Centric Lighting Using Sunrise and Sunset Data (일출일몰 데이터를 이용한 인간 중심 조명 구현에 관한 연구)

  • Doowon Jang;Chunghyeok Kim;Gyuwon Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.486-493
    • /
    • 2024
  • Lighting has been used for a long time as a medium to convey brightness from darkness, and through incandescent lamps and fluorescent lamps, LED light sources have now become the standard in the lighting industry. Recently, the lighting equipment industry has been undergoing rapid digital transformation, starting with smart lighting, and is evolving into smart lighting customized for individuals and spaces through the development of IoT technology, cloud-based services, and data analysis. However, the blue light emitted from digital devices (computers, smartphones, tablets, etc.) or LED lights stimulates the melanopsin in the optic ganglion cells in the retina of the eye, which in turn stimulates the secretion of melatonin through the pineal gland, which regulates the secretion of melatonin. This can reduce sleep quality or disrupt biological rhythms. This interaction between blue light and melatonin has such a significant impact on human sleep patterns and overall health that it is essential to reduce exposure to blue light, especially in the evening. Human-centered lighting refers to lighting that takes into account the effects of light on the physical and mental areas, such as human activity and awakening, improvement of sleep quality, and health management. Many research institutes study the effects in the visible area and the non-visible area. By studying the impact, it is expected to improve the quality of human life. In this study, we plan to study ways to implement human-centered lighting by collecting sunrise and sunset data and linking commercialized LED packages and control devices with open-source hardware.

Interactive Statistics Laboratory using R and Sage (R을 활용한 '대화형 통계학 입문 실습실' 개발과 활용)

  • Lee, Sang-Gu;Lee, Geung-Hee;Choi, Yong-Seok;Lee, Jae Hwa;Lee, Jenny Jyoung
    • Communications of Mathematical Education
    • /
    • v.29 no.4
    • /
    • pp.573-588
    • /
    • 2015
  • In this paper, we introduce development process and application of a simple and effective model of a statistics laboratory using open source software R, one of leading language and environment for statistical computing and graphics. This model consists of HTML files, including Sage cells, video lectures and enough internet resources. Users do not have to install statistical softwares to run their code. Clicking 'evaluate' button in the web page displays the result that is calculated through cloud-computing environment. Hence, with any type of mobile equipment and internet, learners can freely practice statistical concepts and theorems via various examples with sample R (or Sage) codes which were given, while instructors can easily design and modify it for his/her lectures, only gathering many existing resources and editing HTML file. This will be a resonable model of laboratory for studying statistics. This model with bunch of provided materials will reduce the time and effort needed for R-beginners to be acquainted with and understand R language and also stimulate beginners' interest in statistics. We introduce this interactive statistical laboratory as an useful model for beginners to learn basic statistical concepts and R.

Real Time Distributed Parallel Processing to Visualize Noise Map with Big Sensor Data and GIS Data for Smart Cities (스마트시티의 빅 센서 데이터와 빅 GIS 데이터를 융합하여 실시간 온라인 소음지도로 시각화하기 위한 분산병렬처리 방법론)

  • Park, Jong-Won;Sim, Ye-Chan;Jung, Hae-Sun;Lee, Yong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In smart cities, data from various kinds of sensors are collected and processed to provide smart services to the citizens. Noise information services with noise maps using the collected sensor data from various kinds of ubiquitous sensor networks is one of them. This paper presents a research result which generates three dimensional (3D) noise maps in real-time for smart cities. To make a noise map, we have to converge many informal data which include big image data of geographical Information and massive sensor data. Making such a 3D noise map in real-time requires the processing of the stream data from the ubiquitous sensor networks in real-time and the convergence operation in real-time. They are very challenging works. We developed our own methodology for real-time distributed and parallel processing for it and present it in this paper. Further, we developed our own real-time 3D noise map generation system, with the methodology. The system uses open source softwares for it. Here in this paper, we do introduce one of our systems which uses Apache Storm. We did performance evaluation using the developed system. Cloud computing was used for the performance evaluation experiments. It was confirmed that our system was working properly with good performance and the system can produce the 3D noise maps in real-time. The performance evaluation results are given in this paper, as well.

Performance Analysis and Improvement of WANProxy (WANProxy의 성능 분석 및 개선)

  • Kim, Haneul;Ji, Seungkyu;Chung, Kyusik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.45-58
    • /
    • 2020
  • In the current trend of increasing network traffic due to the popularization of cloud service and mobile devices, WAN bandwidth is very low compared to LAN bandwidth. In a WAN environment, a WAN optimizer is needed to overcome performance problems caused by transmission protocol, packet loss, and network bandwidth limitations. In this paper, we analyze the data deduplication algorithm of WANProxy, an open source WAN optimizer, and evaluate its performance in terms of network latency and WAN bandwidth. Also, we evaluate the performance of the two-stage compression method of WANProxy and Zstandard. We propose a new method to improve the performance of WANProxy by revising its data deduplication algorithm and evaluate its performance improvement. We perform experiments using 12 data files of Silesia with a data segment size of 2048 bytes. Experimental results show that the average compression rate by WANProxy is 150.6, and the average network latency reduction rates by WANProxy are 95.2% for a 10 Mbps WAN environment and 60.7% for a 100 Mbps WAN environment, respectively. Compared with WANProxy, the two-stage compression of WANProxy and Zstandard increases the average compression rate by 33%. However, it increases the average network latency by 2.1% for a 10 Mbps WAN environment and 5.27% for a 100 Mbps WAN environment, respectively. Compared with WANProxy, our proposed method increases the average compression rate by 34.8% and reduces the average network latency by 13.8% for a 10 Mbps WAN and 12.9% for a 100 Mbps WAN, respectively. Performance analysis results of WANProxy show that its performance improvement in terms of network latency and WAN bandwidth is excellent in a 10Mbps or less WAN environment while superior in a 100 Mbps WAN environment.