Browse > Article
http://dx.doi.org/10.7780/kjrs.2021.37.3.7

An Implementation of OTB Extension to Produce TOA and TOC Reflectance of LANDSAT-8 OLI Images and Its Product Verification Using RadCalNet RVUS Data  

Kim, Kwangseob (Department of Electronics and Information Engineering, Hansung University)
Lee, Kiwon (Department of Electronics and Information Engineering, Hansung University)
Publication Information
Korean Journal of Remote Sensing / v.37, no.3, 2021 , pp. 449-461 More about this Journal
Abstract
Analysis Ready Data (ARD) for optical satellite images represents a pre-processed product by applying spectral characteristics and viewing parameters for each sensor. The atmospheric correction is one of the fundamental and complicated topics, which helps to produce Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance from multi-spectral image sets. Most remote sensing software provides algorithms or processing schemes dedicated to those corrections of the Landsat-8 OLI sensors. Furthermore, Google Earth Engine (GEE), provides direct access to Landsat reflectance products, USGS-based ARD (USGS-ARD), on the cloud environment. We implemented the Orfeo ToolBox (OTB) atmospheric correction extension, an open-source remote sensing software for manipulating and analyzing high-resolution satellite images. This is the first tool because OTB has not provided calibration modules for any Landsat sensors. Using this extension software, we conducted the absolute atmospheric correction on the Landsat-8 OLI images of Railroad Valley, United States (RVUS) to validate their reflectance products using reflectance data sets of RVUS in the RadCalNet portal. The results showed that the reflectance products using the OTB extension for Landsat revealed a difference by less than 5% compared to RadCalNet RVUS data. In addition, we performed a comparative analysis with reflectance products obtained from other open-source tools such as a QGIS semi-automatic classification plugin and SAGA, besides USGS-ARD products. The reflectance products by the OTB extension showed a high consistency to those of USGS-ARD within the acceptable level in the measurement data range of the RadCalNet RVUS, compared to those of the other two open-source tools. In this study, the verification of the atmospheric calibration processor in OTB extension was carried out, and it proved the application possibility for other satellite sensors in the Compact Advanced Satellite (CAS)-500 or new optical satellites.
Keywords
Atmospheric Correction; Landsat-8 OLI; Orfeo Toolbox; Open-source; TOA/TOC Reflectance;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pinto, T.C., X. Jing, and L. Leigh, 2020. Evaluation Analysis of Landsat Level-1 and Level-2 Data Products Using in Situ Measurements, Remote Sensing, 12(16): 2597.   DOI
2 RadCalNet(Radiometric Calibration Network), 2018. RadCalNet Quick Start Guide, https://www.radcalnet.org/resources/RadCalNetQuickstartGuide_20180702.pdf, Accessed on Jun. 6, 2021.
3 Chen, Y., K. Sun, W. Li, X. Hu, P. Li, and T. Bai, 2021. Vicarious Calibration of FengYun-3D MERSI-II at Railroad Valley Playa Site: A Case for Sensors with Large View Angles, Remote Sensing, 13(7): 1347.   DOI
4 Badawi, M., D. Helder, L. Leigh, and X. Jing, 2019. Methods for Earth-Observing Satellite Surface Reflectance Validation, Remote Sensing, 11(13): 1543.   DOI
5 Bernardo, N., F. Watanabe, T. Rodrigues, and E. Alcantara, 2017. Atmospheric Correction Issues for Retrieving Total Suspended Matter Concentrations in Inland Waters using OLI/Landsat-8 Image, Advances in Space Research, 59(9): 2335-2348.   DOI
6 Bouvet, M., K. Thome, B. Berthelot, A. Bialek, J. Czapla-Myers, N.P. Fox, P. Goryl, P. Henry, L. Ma, S. Marcq, A. Meygret, B.N. Wenny, and E.R. Woolliams, 2019. RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range, Remote Sensing, 11(20): 2401.   DOI
7 Houborg, R. and M.F. McCabe, 2017. Impacts of Dust Aerosol and Adjacency Effects on the Accuracy of Landsat 8 and RapidEye Surface Reflectances, Remote Sensing of Environment, 194: 127-145.   DOI
8 Lee, K. and K. Kim, 2020. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data, Korean Journal of Remote Sensing, 36(2-1): 167-178 (in Korean with English abstract).   DOI
9 Feng, M., C. Huang, S. Channan, E.F. Vermote, J.G. Masek, and J.R. Townshend, 2012. Quality Assessment of Landsat Surface Reflectance Products using MODIS Data, Computers & Geosciences, 38(1): 9-22.   DOI
10 Hermosilla, T., M.A. Wulder, J.C. White, N.C. Coops, and G.W. Hobart, 2017. Updating Landsat Time Series of Surface-reflectance Composites and Forest Change Products with New Observations, International Journal of Applied Earth Observation and Geoinformation, 63: 104-111.   DOI
11 Kim, K. and K. Lee, 2020a. Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Application of RadCalNet Baotou(BTCN) Data, Korean Journal of Remote Sensing, 36(6-2): 1509-1521 (in Korean with English abstract).   DOI
12 Wei, J., Z. Lee, R. Garcia, L. Zoffoli, R.A. Armstrong, Shang, Z., R.A. Armstrong, Z. Shang, P. Sheldon, and R.F. Chen, 2018. An Assessment of Landsat-8 Atmospheric Correction Schemes and Remote Sensing Reflectance Products in Coral Reefs and Coastal Turbid Waters, Remote Sensing of Environment, 215: 18-32.   DOI
13 Siqueira, A., A. Lewis, M. Thankappan, Z. Szantoi, B. Killough, P. Goryl, S. Labahn, J. Ross, T. Tadono, A. Rosenqvist, J. Lacey, and M. Steventon, 2020. CEOS Analysis Ready Data for Land: Implementation Phase and Next Steps, Proc. of 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, Sep. 29, pp. 3376-3378.
14 Kuhn, C., A. de Matos Valerio, N. Ward, L. Loken, H.O. Sawakuchi, M. Kampel, J. Richey, P. Stadler, J. Crawford, R. Striegl, E. Vermote, N. Pahlevan, and D. Butman, 2019. Performance of Landsat-8 and Sentinel-2 Surface Reflectance Products for River Remote Sensing Retrievals of Chlorophyll-a and Turbidity, Remote Sensing of Environment, 224: 104-118.   DOI
15 Lee, K. and K. Kim, 2019. An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation, Korean Journal of Remote Sensing, 35(6-4): 1327-1339 (in Korean with English abstract).   DOI
16 NASA(National Aeronautics and Space Administration), 2013. https://landsat.gsfc.nasa.gov/landsat-8/spectral-response-operational-land-imager-band-band-average-relative-spectral-response, Accessed on May 6, 2021.
17 Qiu, S., Y. Lin, R. Shang, J. Zhang, L. Ma, and Z. Zhu, 2019. Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data, Remote Sensing, 11(1): 51.   DOI
18 USGS(United States Geological Survey), 2018a. Landsat Collections. https://pubs.usgs.gov/fs/2018/3049/fs20183049.pdf, Accessed on Jun. 6, 2021.
19 USGS(United States Geological Survey), 2018b. Landsat8 Operational Land Imager-Thermal Infrared Sensor Solar and View Angle Generation Algorithm Description Document Version 2.0, https://prdwret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1928_L8-OLI-TIRS_Solar-View-Angle-Generation_ADD-v2.pdf, Accessed on April 6, 2021.
20 Young, N.E., R.S. Anderson, S.M. Chignell, A.G. Vorster, R. Lawrence, and P.H. Evangelista, 2017. A Survival Guide to Landsat Preprocessing, Ecology, 98(4): 920-932.   DOI
21 Marzo, A., P. Ferrada, F. Beiza, J. Alonso-Montesinos, J. Ballestrin, and R. Roman, 2016. Comparison of Atacama Desert Solar Spectra vs. ASTM G173-03 Reference Spectra for Solar Energy Application, http://proceedings.ises.org/paper/eurosun2016/eurosun2016-0144-Marzo.pdf, Accessed on Jun. 6, 2021.
22 Kim, K. and K. Lee, 2020b. A Validation Experiment of the Reflectance Products of KOMPSAT-3A Based on RadCalNet Data and Its Applicability to Vegetation Indexing, Remote Sensing, 12(23): 3971.   DOI