• Title/Summary/Keyword: open boundary

Search Result 494, Processing Time 0.029 seconds

Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation

  • Abdelkader, Tamrabet;Belgacem, Mamen;Abderrahmane, Menasria;Abdelhakim, Bouhadra;Abdelouahed, Tounsi;Mofareh Hassan, Ghazwani;Ali, Alnujaie;S.R., Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.289-304
    • /
    • 2023
  • The main objective of this paper is to study the effect of porosity on the buckling behavior of thick functionally graded sandwich plate resting on various boundary conditions under different in-plane loads. The formulation is made for a newly developed sandwich plate using a functional gradient material based on a modified power law function of symmetric and asymmetric configuration. Four different porosity distribution are considered and varied in accordance with material propriety variation in the thickness direction of the face sheets of sandwich plate, metal foam also is considered in this study on the second model of sandwich which containing metal foam core and FGM face sheets. New quasi-3D high shear deformation theory is used here for this investigate; the present kinematic model introduces only six variables with stretching effect by adopting a new indeterminate integral variable in the displacement field. The stability equations are obtained by Hamilton's principle then solved by generalized solution. The effect of Pasternak and Winkler elastic foundations also including here. the present model validated with those found in the open literature, then the impact of different parameters: porosities index, foam cells distribution, boundary conditions, elastic foundation, power law index, ratio aspect, side-to-thickness ratio and different in-plane axial loads on the variation of the buckling behavior are demonstrated.

Algorithm of Predicting Swell-like Significant Waves in the East Coast of Korea (동해안 너울성 고파 예측 알고리즘)

  • Ahn, Suk Jin;Lee, Byeong Wook;Kwon, Seok Jae;Lee, Changhoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2329-2341
    • /
    • 2013
  • In this study, we develop an algorithm to predict swell-like significant waves in the east coast of Korea using the directional wave gauge which is installed near Sokcho. Using the numerical wave model SWAN, we estimate wave data in open sea from the wave data observed through the directional wave gauge. Then, using the wave ray method with the open-sea wave data as offshore boundary conditions, we predict the swell-like significant waves at several points in the east coast of Korea. We verify the prediction methods with the SWAN and wave ray methods by comparing numerically predicted data against either target or measured data at the observation site. We can improve the prediction of the swell-like significant waves in the east sea of Korea using both the real-time wave measurement system and the present prediction algorithm.

Lane Detection System Development based on Android using Optimized Accumulator Cells (Accumulator cells를 최적화한 안드로이드 기반의 차선 검출 시스템 개발)

  • Tsogtbaatar, Erdenetuya;Jang, Young-Min;Cho, Jae-Hyun;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.126-136
    • /
    • 2014
  • In the Advanced Driver Assistance Systems (ADAS) of smart vehicle and Intelligent Transportation System (ITS) for to detect the boundary of lane is being studied a lot of Hough Transform. This method detects correctly recognition the lane. But recognition rate can fall due to detecting straight lines outside of the lane. In order to solve this problems, this paper proposed an algorithm to recognize the lane boundaries and the accumulator cells in Hough space. Based on proposed algorithm, we develop application for Android was developed by H/W verification. Users of smart phone devices could use lane detection and lane departure warning systems for driver's safety whenever and wherever. Software verification using the OpenCV showed efficiency recognition correct rate of 93.8% and hardware real-time verification for an application development in the Android phone showed recognition correct rate of 70%.

Prediction of Swell-like High Waves Using Observed Data on the East Coast of Korea (관측치를 활용한 동해안 너울성 고파 예측)

  • Lee, Changhoon;Ahn, Suk Jin;Lee, Byeong Wook;Kim, Shin Woong;Kwon, Seok Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.149-159
    • /
    • 2014
  • In this study, we develop an algorithm to predict swell-like high waves on the east coast of Korea using the directional wave gauge which was installed near Sokcho. Using the numerical wave model SWAN, we estimate wave data in open sea from the wave data collected by using the directional wave gauge. Then, using the wave ray method and SWAN model with the open-sea wave data as offshore boundary conditions, we predict the swell-like high waves at several major points on the east coast of Korea. We verify the prediction methods with the SWAN and wave ray methods by comparing predicted data against measured one at Wangdolcho. We can improve the prediction of the swell-like high waves in the east sea of Korea using both the real-time wave measurement system and the present prediction algorithm.

Analysis of 1D and 2D Flows in Open-Channel with FDM and FVM (유한차분법과 유한체적법을 이용한 1차원과 2차원 개수로 흐름해석)

  • Kim, Man Sik;Lee, Jin Hee;Jeong, Chan;Park, Roh Hyuk
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2008
  • The one-dimensional (1D) finite-difference method (FDM) with Abbott-Ionescu scheme and the two-dimensional (2D) finite-volume method (FVM) with an approximate Riemann solver (Osher scheme) for unsteady flow calculation in river are described. The two models have been applied to several problems including flow in a straight channel, flow in a slightly meandering channel and a flow in a meandering channel. The uniform rectangular channel was employed for the purpose of comparing results. A comparison is made between the results of computation on 1D and 2D flows including straight channel, slightly meandering channel and meandering channel application. The implementation of the finite-volume method allows complex boundary geometry represented. Agreement between FVM and FDM results regarding the discharge and stage is considered very satisfactory in straight channel application. It was concluded that a 1D analysis is sufficient if the channel is prismatic and remains straight. For curved (meandering) channels, a 2D or 3D model must be used in order to model the flow accurately.

  • PDF

Numerical simulation of Hydrodynamics and water properties in the Yellow Sea. I. Climatological inter-annual variability

  • Kim, Chang-S.;Lim, Hak-Soo;Yoon, Jong-Joo;Chu, Peter-C.
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.72-95
    • /
    • 2004
  • The Yellow Sea is characterized by relatively shallow water depth, varying range of tidal action and very complex coastal geometry such as islands, bays, peninsulas, tidal flats, shoals etc. The dynamic system is controlled by tides, regional winds, river discharge, and interaction with the Kuroshio. The circulation, water mass properties and their variability in the Yellow Sea are very complicated and still far from clear understanding. In this study, an effort to improve our understanding the dynamic feature of the Yellow Sea system was conducted using numerical simulation with the ROMS model, applying climatologic forcing such as winds, heat flux and fresh water precipitation. The inter-annual variability of general circulation and thermohaline structure throughout the year has been obtained, which has been compared with observational data sets. The simulated horizontal distribution and vertical cross-sectional structures of temperature and salinity show a good agreement with the observational data indicating significantly the water masses such as Yellow Sea Warm Water, Yellow Sea Bottom Cold Water, Changjiang River Diluted Water and other sporadically observed coastal waters around the Yellow Sea. The tidal effects on circulation and dynamic features such as coastal tidal fronts and coastal mixing are predominant in the Yellow Sea. Hence the tidal effects on those dynamic features are dealt in the accompanying paper (Kim et at., 2004). The ROMS model adopts curvilinear grid with horizontal resolution of 35 km and 20 vertical grid spacing confirming to relatively realistic bottom topography. The model was initialized with the LEVITUS climatologic data and forced by the monthly mean air-sea fluxes of momentum, heat and fresh water derived from COADS. On the open boundaries, climatological temperature and salinity are nudged every 20 days for data assimilation to stabilize the modeling implementation. This study demonstrates a Yellow Sea version of Atlantic Basin experiment conducted by Haidvogel et al. (2000) experiment that the ROMS simulates the dynamic variability of temperature, salinity, and velocity fields in the ocean. However the present study has been improved to deal with the large river system, open boundary nudging process and further with combination of the tidal forcing that is a significant feature in the Yellow Sea.

Nonlinear Tidal Characteristics along the Uldolmok Waterway off the Southwestern Tip of the Korean Peninsula

  • Kang, Sok-Kuh;Yum, Ki-Dai;So, Jae-Kwi;Song, Won-Oh
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.89-106
    • /
    • 2003
  • Analyses of tidal observations and a numerical model of the $M_2$ and $M_4$ tides in the Uldolmok waterway located at the southwestern tip of the Korean Peninsula are described. This waterway is well known fer its strong tidal flows of up to more than 10 knots at the narrowest part of the channel. Harmonic analysis of the observed water level at five tidal stations reveals dramatic changes in the amplitude and phase of the shallow water constituents at the station near the narrowest part, while survey results show a decreasing trend in local mean sea levels toward the narrow section. It was also observed that the amplitudes of semi-diurnal constituents, $M_2$ and $S_2$ are diminishing toward the narrowest part of the waterway. Two-dimensional numerical modeling shows that the $M_2$ energy flux is dominated by the component coming from the eastern boundary. The $M_2$ energy is inward from both open boundaries and is transported toward the narrow region of the channel, where it is frictionally dissipated or transferred to other constituents due to a strong non-linear advection effect. It is also shown that the $M_4$ generation is strong around the narrow region, and the abrupt decrease in the M4 amplitude in the region is due to a cancellation of the locally generated M4 with the component propagated from open boundaries. The superposition of both propagated and generated M4 contributions also explains the discontinuity of the M4 phase lag in the region. The tide-induced residual sea level change and the regeneration effect of the $M_2$ tide through interaction with $M_4$ are also examined.

Analysis of Environmental Hazard by the Leachate from Disposal Waste (매립장 침출수 환경 재해에 관한 연구)

  • Kim, Jun-Kyoung;Bae, Hyo-Jun;Choi, Oh-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.4 s.11
    • /
    • pp.145-151
    • /
    • 2003
  • The domestic and the industry wastes which mainly come out of human life activities have been usually processed mainly by the incineration method and/or the method of reclamation. The method of reclamation, specially open dumping, has caused significant environmental pollution problems on the local or regional soil and groundwater system by leachate. Therefore, to investigate the 3-D structure characteristics of environmental pollution area is one of the hot subjects. We applied dipole-dipole method of electrical resistivity survey to investigate 3-D environmental contamination characteristics of the Noeun landfill area. For electrical resistivity survey, the line for measurements was established parallel to the main boundary of the Noeun landfill, for effective investigation of the whole landfill area. The result shows that the uppermost layer of the Noeun landfill is believed to be stabilized completely, based on the result of electrical resistivity values. However, the lowest layer of the Noeun landfill was partially polluted by leachate. Therefore, the electrical resistivity survey method is believed to be the one of the most effective methods to investigate three-dimensional distribution of leachate occurred in the lower part of landfill area.

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.

A Study on the Performance Analysis of an Extended Scan Path Architecture (확장된 스캔 경로 구조의 성능 평가에 관한 연구)

  • 손우정
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 1998
  • In this paper, we propose a ESP(Extended Scan Path) architecture for multi-board testing. The conventional architectures for board testing are single scan path and multi-scan path. In the single scan path architecture, the scan path for test data is just one chain. If the scan path is faulty due to short or open, the test data is not valid. In the multi-scan path architecture, there are additional signals in multi-board testing. So conventional architectures are not adopted to multi-board testing. In the case of the ESP architecture, even though scan path is either short or open, it doesn't affect remaining other scan paths. As a result of executing parallel BIST and IEEE 1149.1 boundary scan test by using the proposed ESP architecture, we observed that the test time is short compared with the single scan path architecture. By comparing the ESP architecture with single scan path responding to independency of scan path, test time and with multi-scan path responding to signal, synchronization, we showed that the architecture has improved results.

  • PDF