• Title/Summary/Keyword: oocyte development

Search Result 615, Processing Time 0.025 seconds

Effect of Oocyte Maturation Medium, Cytochalasin Treatment and Electric Activation on Embryonic Development after Intracytoplasmic Sperm Injection in Pigs

  • Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Hyun, Sang-Hwan;Lee, Eunsong
    • Journal of Embryo Transfer
    • /
    • v.28 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The objective of this study was to examine the effect of in vitro maturation (IVM) medium, cytochalasin B (CB) treatment during intracytoplasmic sperm injection (ICSI), and electric activation on in vitro development ICSI-derived embryos in pigs. Immature pig oocytes were matured in vitro in medium 199 (M199) or porcine zygote medium (PZM)-3 that were supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 21~22 h. ICSI embryos were produced by injecting single sperm directly into the cytoplasm of IVM oocytes. The oocytes matured in PZM-3 with 61.6 mM NaCl (low-NaCl PZM-3) tended to decrease (0.05

Developmental Potential of Interspecies Nuclear Transferred Embryos using Mouse Embryonic Fibroblast In Vitro

  • B.S.Koo;Yoon, J.I.;Son, H.Y.;Kim, M.G.;Park, C.H.;Lee, S.G.;Lee, Y.I.;Lee, C.K.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.109-109
    • /
    • 2003
  • Even though success in birth of live offspring from nuclear transfer(NT) using somatic cells in many species, detailed information on processes or mechanisms of development are not well known. Cytoplasm of bovine oocyte has been known to support the development of nuclear transferred embryos using nuclear donor cells from different species. Therefore, interspecies NT might be used to find answers of some questions in basic aspect of nuclear transfer In this study, we examined the developmental potential of reconstructed embryos when bovine oocyte as a cytoplasm recipient and mouse embryonic fibroblast as a nuclear donor were used. The nuclear transfer units were aliocated in Group 1 (murine block media and normal media) and Group 2. (bovine block media and normal media). NT units were not blocked at 2-cell stage regardless of types of medium. On mouse media, poor development of interspecies NT units was observed compared to bovine media. However, as NT units cultured in bovine normal medium, embryos developed over 8-cell stage. Further studies performed to increase the developmental rate in condition of antioxidant treatment. Despite low development, bovine-murine interspecies nuclear transferred embryos could develop to blastocysts and they showed that blastocyts rate of antioxidant group was superior to those of non-antioxidant group. Next, we investigated gene expression pattern which is carried out for zygotic activation. The Xist gene is expressed in female mouse embryo after zygotic activation of 4-cell stage. But interspecies nuclear transferred embryos do not express Xist gene at 4-cell stage. As a result, it is suggested that the bovine cytoplasm controls the early preimplantation development in interspecies NT However, the development of later stages might require genomic control from transferred donor nucleus. Therefore, even though the involvement of several other factors such as mitochondrial incompatibility, effective development of embryos produced by interspecies NT requires proper genomic activation of donor nucleus after overcoming the cytoplasmic control of recipient oocytes.

  • PDF

Effect of EGF on In Vitro Oocyte Maturation and Embryo Development and Expression of EGF mRNA in Bovine Oocytes and Embryo II. Detection of Epidermal Growth Factor mRNA in bovine Ova during In Vitro Maturation and after Fertilization In Vitro

  • Kim, Kwang-Sig;Kim, Chang-Keun;Chung, Yung-Chai;Hwang, Seong-Soo;Chang, Won-Kyong;Cheong, Il-Cheong;Park, Jin-Ki;Min, Kwan-Sik;Lee, Yun-Keun
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.29-29
    • /
    • 2001
  • This study was carried out to examine, by the reverse transcription chain reaction(RT-PCR)and Immunostain assays, epidermal growth factor mRNA expression in bovine ova during oocyte maturation in vitro(0-2lh)and after fertilization in vitro(6-144hr: zygotes to blastocysts). In this study, the transcripts of EGF was detected in oocytes using primers for EGF. Transcripts for EGF mRNA was not detected in oocytes through in vitro maturation. But EGF mRNA were present after fertilization up to the 2-cell stage and the blastocyst stage. The highest mRNA levels in 4-cell stage embryos were decreased at 8cell stage and then reincreased upto morulae and blastocysts. The results of this study showed EGF mRNA are present in embryo after fertilization and this factors are involved in the regulation of bovine embryo development.

  • PDF

Gametogenesis and Reproductive Cycle of the Rock Shell, Reishia (Thais) clavigera (Neogastropoda: Muricidae), on the West Coast of Korea

  • Lee, Ju-Ha
    • Animal cells and systems
    • /
    • v.3 no.4
    • /
    • pp.375-383
    • /
    • 1999
  • Gonadal development, gametogenesis, reproductive cycle, and first sexual maturity of Reishia clavigera were investigated monthly from July 1998 to June 1999 through cytological and histological observations. R. clavigera had separate sexes, and was an internal fertilizer. The ma1e penis was located near the two tentacles. The ovary and testis were composed of a great number of oogenic lobules and spermatogenic tubules, respectively. The size of ripe oocyte ranged from 130 to 140 ${\mu}$m in diameter. The peripheral cytoplasm of the germinal vesicle of the ripe oocyte in many cases were surrounded by smaller yolk granules, while the eccentric cytoplasm was occupied with larger ones. The reproductive cycle of R. clavigera could be classified into five successive stages: early active, late active, ripe, spawning, and recovery. Spawning of females occurred from early July to August when the seawater reached above 24.8$^{\circ}C$. Spawning of males occurred from early June to August in the water above 22.8$^{\circ}C$. Minimum size for sexual maturity of both sexes was above 10.0 mm in shell height. Each egg capsule was a cylinder or spindle in shape, 4-6 mm in length and 1-2 mm in width. Colors of newly spawned egg capsules showed yellowish white or pale yellow, while those with veliger larvae showed pale black, and released larvae or dead egg capsules showed black violet. The fecundity in an egg capsule ranged from 70 to 91 eggs (mean=80.28 eggs).

  • PDF

Polscope-Assisted Enucleation for Nuclear Transfer in Mice

  • Won Ji Young;Kang Jee Hyun;Shim Hosup
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.257-260
    • /
    • 2004
  • Efficiency of somatic cell nuclear transfer was investigated in mice. First, oocyte activation was induced by SrCl₂, and the rate of development was compared with embryos from normal fertilization. Although more than one half of SrCl₂-treated oocytes developed to blastocysts (146/262, 55.7%), the rate of blastocyst formation was significantly lower than normal fertilization controls (59/79, 74.6%). Second, enucleation of oocytes was performed using Polscope that enables non-invasive visualization of metaphase spindles. Such approach could not only avoid damage of oocytes during an exposure to UV light often employed in conventional enucleation procedures, but could also assure the removal of nuclei from all oocytes operated because of monitoring the location of spindles during an entire process of enucleation. Morphologically normal blastocysts were obtained from the transfer of cumulus cell nuclei into enucleated oocytes. However, the rate of development into the blastocyst stage was still low (4/93, 4.3%). This reflects that the nuclear transfer procedure used in this study was not sufficiently optimized, and other factors may also impact greatly the efficiency of nuclear transfer. Including an induction of oocyte activation and method of enucleation tested in this study, a lot more elements are remained to be optimized to improve the efficiency of somatic cell nuclear transfer in mice.

Effect of the Timing of Oocyte Activation on Development of Rat Somatic Cell Nuclear Transfer Embryos

  • Roh, Sang-Ho
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.229-234
    • /
    • 2005
  • Methods for activation of reconstructed oocytes were examined for the production of nuclear transfer (NT) rat embryos using fetal neural stem cells as donor. Neural stem cells were isolated from Day 14.5 rat fetuses, and the oocytes for recipient cytoplasm were recovered from 4-week old Sprague Dawley rats. After enucleation and nuclear injection, the reconstructed oocytes were immediately exposed to activation medium consisting of 10 mM $SrCl_2$ for 4 h (immediate activation after injection; IAI), or cultured in vitro for $2\~3$ h before activation treatment (injection before activation; IBA). Pre-activated oocytes were also used for NT to test reprogramming potential of artificially activated oocytes. The oocytes were grouped as IIA (immediate injection after activation) and ABI (activation $2\~3$ h before injection). Following NT, the oocytes were cultured in vitro. Development of the NT embryos was monitored at 44 and 119 h after activation. The embryos in groups IAI, mA, and IIA were cleaved to the 2-cell stage at the rates of $36.6\%\;(15/41),\;39.5\%\;(17/43)\;and\;46.3\%$ (25/54), respectively. However, in the ABI group, only one embryo ($1.8\%$, 1/55) was cleaved after activation. After in vitro culture, two NT embryos from IAI group had developed to the morula stage $(4.9\%\cdot2/41)$. However, no morula or blastocyst was obtained in the other groups. These results suggest that immediate activation after injection (IAI) method may be used for the production of rat somatic cell NT embryos.

Possible Improvement of Oocyte Supply by the use of Aged Mice and Different Gonadotrophins

  • Lee, Myungook;Ahn, Jong Il;Kwun, Hyosook;Ko, Dong Woo;Ahn, Jiyeon;Lim, Jeong Mook
    • Journal of Embryo Transfer
    • /
    • v.33 no.2
    • /
    • pp.69-73
    • /
    • 2018
  • This study was conducted to examine the influences of two human chorion gonadotrophins (hCGs) being injected into young or aged (45- to 65-week old) outbred (ICR) mice on developmental capacity of oocytes retrieved. In vitro-culture and parthenogenetic activation of oocytes retrieved were employed for the assessment. Superovulation was determined as being induced when more than 25 oocytes were retrieved. No aged mice were superovulated, while in contrast, 67-100% were superovulated in the 6- to 8-week-old (young) mice. In the aged, hCG injection yielded better retrieval (5 vs. 13 to 14.8 oocytes/mouse). Overall, no significant difference between two hCGs was detected but between the young and aged, significant differences in maturational arrest (0% vs. 39% MI arrest and 46% vs. 15% degeneration) and developmental capacity (24% vs. 46% 8-cell embryo development) were detected. In conclusion, hCG injection contributes to increasing oocyte retrieval from aged outbred mice, but the kinds of gonadotrophin influenced the efficiency of hyperstimulation induction in specific ages.