• Title/Summary/Keyword: one-way concrete slabs

Search Result 67, Processing Time 0.024 seconds

Influence of dynamic loading induced by free fall ball on high-performance concrete slabs with different steel fiber contents

  • Al kulabi, Ahmed K.;Al zahid, Ali A.
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.1
    • /
    • pp.19-32
    • /
    • 2019
  • One way to provide safe buildings and to protect tenants from the terrorist attacks that have been increasing in the world is to study the behavior of buildings members after being exposed to dynamic loads. Buildings behaviour after being exposed to attacks inspired researchers all around the world to investigate the effect of impact loads on buildings members like slabs and to deeply study the properties of High Performance Concrete. HPC is well-known in its high performance and resistance to dynamic loads when it is compared with normal weight concrete. Therefore, the aim of this paper is finding out the impact of dynamic loads on RPC slabs' flexural capacity, serviceability loads, and failure type. For that purpose and to get answers for these questions, three concrete slabs with 0.5, 1, and 2% steel fiber contents were experimentally tested. The tests results showed that the content of steel fiber plays the key role in specifying the static capacity of concrete slabs after being dynamically loaded, and increasing the content of steel fiber led to improving the static loading capacity, decreased the cracks numbers and widths at the same time, and provided a safer environment for the buildings residents.

Strengthening of Cutouts in Existing One-Way Spanning R. C. Flat Slabs Using CFRP Sheets

  • Shehab, Hamdy K.;Eisa, Ahmed S.;El-Awady, Kareem A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.327-341
    • /
    • 2017
  • Openings in slabs are usually required for many different applications such as aeriation ducts and air conditioning. Opening in concrete slabs due to cutouts significantly decrease the member stiffness. There are different techniques to strengthen slabs with opening cutouts. This study presents experimental and numerical investigations on the use of Carbon Fiber Reinforced Polymers (CFRP) as strengthening material to strengthen and restore the load carrying capacity of R.C. slabs after having cutout in the hogging moment region. The experimental program consisted of testing five (oneway spanning R.C. flat slabs) with overhang. All slabs were prismatic, rectangular in cross-section and nominally 2000 mm long, 1000 mm width, and 100 mm thickness with a clear span (distance between supports) of 1200 mm and the overhang length is 700 mm. All slabs were loaded up to 30 kN (45% of ultimate load for reference slab, before yielding of the longitudinal reinforcement), then the load was kept constant during cutting concrete and steel bars (producing cut out). After that operation, slabs were loaded till failure. An analytical study using finite element analysis (FEA) is performed using the commercial software ANSYS. The FEA has been validated and calibrated using the experimental results. The FE model was found to be in a good agreement with the experimental results. The investigated key parameters were slab aspect ratio for the opening ratios of [1:1, 2:1], CFRP layers and the laminates widths, positions for cutouts and the CFRP configurations around cutouts.

Structural performance of recycled aggregates concrete sourced from low strength concrete

  • Goksu, Caglar;Saribas, Ilyas;Binbir, Ergun;Akkaya, Yilmaz;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.77-93
    • /
    • 2019
  • Although much research has been carried out using recycled aggregates sourced from normal strength concrete, most of the buildings to be demolished are constructed with low strength concrete. Therefore, the properties of the concrete incorporating recycled aggregates, sourced from the waste of structural elements cast with low strength concrete, were investigated in this study. Four different concrete mixtures were designed incorporating natural and recycled aggregates with and without fly ash. The results of the mechanical and durability tests of the concrete mixtures are presented. Additionally, full-scale one-way reinforced concrete slabs were cast, using these concrete mixtures, and subjected to bending test. The feasibility of using conventional reinforced concrete theory for the slabs made with structural concrete incorporating recycled aggregates was investigated.

Behaviour of One-Way Concrete Slabs Reinforced with Fiber Reinforced Polymer (FRP) Bars (FRP 보강근을 주근으로 사용한 일방향 콘크리트 슬래브의 거동)

  • Seo, Dae-Won;Han, Byum-Seok;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.763-771
    • /
    • 2007
  • Over the last few decades, many researches have been conducted in order to find solution to the problem of corrosion in steel reinforced concrete. As a result, methods such as the use of stainless steel bars, epoxy coatings, and concrete additives, etc., have been tried. While effective in some situations, such remedies may still be unable to completely eliminate the problems of steel corrosion. Fiber reinforced polymer (FRP) elements are appealing as reinforcement due to some material properties such as high tensile strength, low density, and noncorrosive. However, due to the generally lower modulus of elasticity of FRP in comparison with the steel and the linear behavior of FRP, certain aspects of the structural behavior of RC members reinforced with FRP may be substantially different from similar elements reinforced with steel reinforcement. This paper presents the flexural behavior of one-way concrete slabs reinforced with FRP bars. They were simply supported and tested in the laboratory under static loading conditions to investigate their crack pattern and width, deflections, strains and mode of failure. The experimental results shows that behavior of the FRP reinforced slabs was bilinearly elastic until failure. Also, the results show that the FRP overreinforced concrete beams in this study can be safe for design in terms of deformability.

Crack Mitigation of Reinforced Concrete and Expansive SHCC Composite Slabs (콘크리트와 팽창형 SHCC 합성 슬래브의 균열제어 성능)

  • Yun, Hyun-Do;Lim, Sung-Chan;T., Iizuka;Y., Sakaguchi;K., Rokugo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.23-24
    • /
    • 2009
  • This paper explores the structural application of an expansive SHCC to improve the crack-damage properties of RC flexural members. The results of test on four simply supported slabs are described. The effect of the type of SHCC (Non-and expansive SHCC) and thickness of SHCC layer (10 and 20mm) on the ultimate flexural load, first crack load, crack width and spacing, and the load-deflection relationship of one-way slabs was investigated.

  • PDF

Proposing the Thickness of 2-Way Slab Satisfying Floor Vibration Criteria for Several Boundary Condition (수직진동에 대한 사용성을 고려한 경계조건에 따른 2방향 슬래브 최소두께 제안)

  • Kim, Dong-Hyun;Lee, Min-Jung;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.199-202
    • /
    • 2005
  • KCI 2003 provides minimum thickness of slab that satisfies serviceability to static displacement. Previous study (Han, et al. 2003) showed the several slabs that designed according to minimum thickness criteria had floor vibration problem. In this study, evaluate the floor vibration serviceability of KCI 2003 minimum thickness requirements for 2-way flat plate and propose the minimum thicknesses of 2-way slabs that satisfy floor vibration criteria according to several boundary condition. For this purpose, one degree of freedom model is used and Monte Carlo simulation is performed.

  • PDF

Experimental Analysis on the Criteria of the Explosion Damage for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 기준에 대한 실험적 분석)

  • Lee, Seung Jae;Park, Jong Yil;Lee, Young Hak;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.68-74
    • /
    • 2017
  • To predict the damage of Reinforced Concrete (RC) structures from mass explosion, Pressure-Impulse (P-I) curves representing the relationship between peak pressure and impulse based on damage criteria are essential. There are P-I curves developed by the U.S. DoD without detailed explanation regarding validation. In this study, full scale explosion tests were conducted measuring response of RC slab to modify and validate pre-existing P-I curves. Four same RC slabs were prepared, and placed at different distances, which are fixed to steel frame with concrete base. Scaled distances were selected to show different failure types using P-I curve based on Single Degree Of Freedom (SDOF) model. It was found that SDOF model can be used to evaluate and identify one-way RC slab damage with difference damage criteria.

Time-dependent bond transfer length under pure tension in one way slabs

  • Vakhshouri, Behnam
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.301-312
    • /
    • 2016
  • In a concrete member under pure tension, the stress in concrete is uniformly distributed over the whole concrete section. It is supposed that a local bond failure occurs at each crack, and there is a relative slip between steel and surrounding concrete. The compatibility of deformation between the concrete and reinforcement is thus not maintained. The bond transfer length is a length of reinforcement adjacent to the crack where the compatibility of strain between the steel and concrete is not maintained because of partially bond breakdown and slip. It is an empirical measure of the bond characteristics of the reinforcement, incorporating bar diameter and surface characteristics such as texture. Based on results from a series of previously conducted long-term tests on eight restrained reinforced concrete slab specimens and material properties including creep and shrinkage of two concrete batches, the ratio of final bond transfer length after all shrinkage cracking, to THE initial bond transfer length is presented.

Performance Experiments of SHCC and High Tensile Reinforced Composite Concrete Slabs (SHCC 및 고장력 철근 복합 콘크리트 슬래브의 성능실험)

  • Moon, Hyung-Joo;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • A type of one-way concrete composite slabs made by strain hardening cementitious composites (SHCC) deck combined with high tensile reinforcements was developed and evaluated by four-point slab bending test. The SHCC material was considered to have an high-ductile and strain hardening behavior in tension after cracking. From experimental comparisons with conventional reinforced concrete slab, the proposed SHCC and high tensile reinforced concrete composite slab showed more improved responses both in service and ultimate load capacities as well as in control of crack width and deflection.

Investigation for the Efficiency in Flexural Design of CFRP Bar-Reinforced Concrete Slab (CFRP 보강근 보강 콘크리트 슬래브 휨설계의 효율성에 관한 연구)

  • Kang, Su-Tae;Yang, Eun-Ik;Choi, Myung-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.81-90
    • /
    • 2022
  • In this study, for one-way concrete slabs, the flexural strength, deflection, and crack width according to the amount of reinforcing bars were compared for the cases of using steel reinforcing bars and CFRP reinforcing bars. Critical performance dominating the flexural design was investigated and how to design the CFRP-reinforced concrete slab with efficiency was also discussed. It was found that CFRP-reinforced concrete slabs could achieve greater design flexural strength with the same amount of reinforcing bars compared to those using steel rebar, while deflection and crack width were relatively much larger. In concrete slabs using CFRP reinforcing bars, it was confirmed that the maximum crack width acts as a dominant factor in the design. For more efficient flexural design, it is necessary to mitigate the allowable crack width to 0.7 mm and to apply smaller diameter reinforcing bars to control the crack width.