• Title/Summary/Keyword: one-dimensional Riemann problem.

Search Result 11, Processing Time 0.039 seconds

CONSTRUCTION OF THE 2D RIEMANN SOLUTIONS FOR A NONSTRICTLY HYPERBOLIC CONSERVATION LAW

  • Sun, Meina
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • In this note, we consider the Riemann problem for a two-dimensional nonstrictly hyperbolic system of conservation laws. Without the restriction that each jump of the initial data projects one planar elementary wave, six topologically distinct solutions are constructed by applying the generalized characteristic analysis method, in which the delta shock waves and the vacuum states appear. Moreover we demonstrate that the nature of our solutions is identical with that of solutions to the corresponding one-dimensional Cauchy problem, which provides a verification that our construction produces the correct global solutions.

SEMI-HYPERBOLIC PATCHES ARISING FROM A TRANSONIC SHOCK IN SIMPLE WAVES INTERACTION

  • Song, Kyungwoo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.945-957
    • /
    • 2013
  • In this paper we consider a Riemann problem, in particular, the case of the presence of the semi-hyperbolic patches arising from a transonic shock in simple waves interaction. Under this circumstance, we construct global solutions of the two-dimensional Riemann problem of the pressure gradient system. We approach the problem as a Goursat boundary value problem and a mixed initial-boundary value problem, where one of the boundaries is the transonic shock.

HIGH-SPEED FLOW PHENOMENA IN COMPRESSIBLE GAS-LIQUID TWO-PHASE MEDIA (압축성 기-액 이상매체중의 고속 유동현상)

  • Shin, Byeong-Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.249-257
    • /
    • 2007
  • A high resolution numerical method aimed at solving gas-liquid two-phase flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

  • PDF

Analysis of Shallow-Water Equations with HLLC Approximate Riemann Solver (HLLC Approximate Riemann Solver를 이용한 천수방정식 해석)

  • Kim, Dae-Hong;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.845-855
    • /
    • 2004
  • The propagation and associated run-up process of nearshore tsunamis in the vicinity of shorelines have been analyzed by using a two-dimensional numerical model. The governing equations of the model are the nonlinear shallow-water equations. They are discretized explicitly by using a finite volume method and the numerical fluxes are reconstructed with a HLLC approximate Riemann solver and weighted averaged flux method. The model is applied to two problems; The first problem deals with water surface oscillations, while the second one simulates the propagation and subsequent run-up process of nearshore tsunamis. Predicted results have been compared to available analytical solutions and laboratory measurements. A very good agreement has been observed.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW (캐비테이션 유동해석을 위한 기-액 2상 국소균질 모델)

  • Shin, Byeong-Rog
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.53-62
    • /
    • 2007
  • A high resolution numerical method aimed at solving cavitating flow is proposed and applied to gas-liquid two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. By applying the homogeneous equilibrium cavitation model, the present density-based numerical method permits simple treatment of the whole gas-liquid two-phase flow field, including wave propagation and large density changes. The speed of sound for gas-liquid two-phase media is derived on the basis of thermodynamic relations and compared with that by eigenvalues. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at isothermal condition and some data related to computational efficiency are made. Comparisons of predicted results and exact solutions are provided and discussed.

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

EIGENVALUE APPROACH FOR UNSTEADY FRICTION WATER HAMMER MODEL

  • Jung Bong Seog;Karney Bryan W.
    • Water Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.177-183
    • /
    • 2004
  • This paper introduces an eigenvalue method of transforming the hyperbolic partial differential equations of a particular unsteady friction water hammer model into characteristic form. This method is based on the solution of the corresponding one-dimensional Riemann problem that transforms hyperbolic quasi-linear equations into ordinary differential equations along the characteristic directions, which in this case arises as the eigenvalues of the system. A mathematical justification and generalization of the eigenvalues method is provided and this approach is compared to the traditional characteristic method.

  • PDF

THE FORMULATION OF LINEAR THEORY OF A REFLECTED SHOCK IN CYLINDRICAL GEOMETRY

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.543-559
    • /
    • 2002
  • In this paper we formulate the linear theory for compressible fluids in cylindrical geometry with small perturbation at the material interface. We derive the first order equations in the smooth regions, boundary conditions at the shock fronts and the contact interface by linearizing the Euler equations and Rankine-Hugoniot conditions. The small amplitude solution formulated in this paper will be important for calibration of results from full numerical simulation of compressible fluids in cylindrical geometry.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW -Part II. HIGH SPEED FLOW PHENOMENA IN GAS-LIQUID TWO-PHASE MEDIA (캐비테이션 유동해석을 위한 기- 2상 국소균질 모델 -제2보: 기-액 2상 매체중의 고속유동현상)

  • Shin, B.R.;Park, S.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • A high resolution numerical method aimed at solving cavitating flow was proposed and applied to gas-liquid two-phase shock tube problem with arbitrary void fraction. The present method with compressibility effects employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. The Jacobian matrix from the inviscid flux of constitute equation is diagonalized analytically and the speed of sound for the two-phase media is derived by eigenvalues. So that the present method is appropriate for the extension of high order upwind schemes based on the characteristic theory. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results of high speed flow phenomena such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and solutions at isothermal condition are provided and discussed.

Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method (ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.