• Title/Summary/Keyword: on-state resistance

Search Result 1,161, Processing Time 0.036 seconds

A Mechanical Sensorless Vector-Controlled Induction Motor System with Parameter Identification by the Aid of Image Processor

  • Tsuji Mineo;Chen Shuo;Motoo Tatsunori;Kawabe Yuki;Hamasaki Shin-ichi
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This paper presents a mechanical sensorless vector-controlled system with parameter identification by the aid of image processor. Based on the flux observer and the model reference adaptive system method, the proposed sensorless system includes rotor speed estimation and stator resistance identification using flux errors. Since the mathematical model of this system is constructed in a synchronously rotating reference frame, a linear model is easily derived for analyzing the system stability, including motor operating state and parameter variations. Because it is difficult to identify rotor resistance simultaneously while estimating rotor speed, a low-accuracy image processor is used to measure the mechanical axis position for calculating the rotor speed at a steady-state operation. The rotor resistance is identified by the error between the estimated speed using the estimated flux and the calculated speed using the image processor. Finally, the validity of this proposed system has been proven through experimentation.

Theoretical Analysis of the Characteristics of Heat Transfer in Cylinder Drum for Paper Dryer (제지건조기용 실린더드럼에서 열전달특성에 관한 이론적 분석)

  • Lee, Ki-Woo;Chun, Won-Pyo;Lee, Kye-Jung;Jung, Seok-Pil
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2082-2087
    • /
    • 2008
  • The heat transfer process from steam to web through the cylinder drum consists of the thermal resistance by condensate thickness. thickness of shell, and the contact resistance between cylinder and web. The most thermal resistance in conventional cylinder drum dryer is generated by condensate, which is increased by the increase on revolution per minute(RPM). Therefore, the increase of RPM for the production enhancement results in the more thermal resistance, and eventually RPM is restricted. In this study, the theoretical analysis on the characteristics of heat transfer in cylinder drum for paper dryer was performed in the stationary state of steam in drum. The overall heat transfer coefficient, steam quantity and heat transfer quantity were predicted by diameter and length of drum, condensate thickness, revolution per minute and steam temperature for experimental apparatus design.

  • PDF

Effect of seismic acceleration directions on dynamic earth pressures in retaining structures

  • Nian, Ting-Kai;Liu, Bo;Han, Jie;Huang, Run-Qiu
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.263-277
    • /
    • 2014
  • In the conventional design of retaining structures in a seismic zone, seismic inertia forces are commonly assumed to act upwards and towards the wall facing to cause a maximum active thrust or act upwards and towards the backfill to cause a minimum passive resistance. However, under certain circumstances this design approach might underestimate the dynamic active thrust or overestimate the dynamic passive resistance acting on a rigid retaining structure. In this study, a new analytical method for dynamic active and passive forces in c-${\phi}$ soils with an infinite slope was proposed based on the Rankine earth pressure theory and the Mohr-Coulomb yield criterion, to investigate the influence of seismic inertia force directions on the total active and passive forces. Four combinations of seismic acceleration with both vertical (upwards or downwards) and horizontal (towards the wall or backfill) directions, were considered. A series of dimensionless dynamic active and passive force charts were developed to evaluate the key influence factors, such as backfill inclination ${\beta}$, dimensionless cohesion $c/{\gamma}H$, friction angle ${\phi}$, horizontal and vertical seismic coefficients, $k _h$ and $k_v$. A comparative study shows that a combination of downward and towards-the-wall seismic inertia forces causes a maximum active thrust while a combination of upward and towards-the-wall seismic inertia forces causes a minimum passive resistance. This finding is recommended for use in the design of retaining structures in a seismic zone.

Effect of Chitosan Treatment Methods on the Dyeing of Cotton, Nylon, and PET using Cochineal (II) - Focusing on Color Change by Laundering, Washfastness and Abrasion Fastness - (코치닐 염색(染色)에서 키토산처리(處理) 방법(方法)의 변화(變化)가 면(綿), 나일론, PET의 염색(染色)에 미치는 영향(影響) (II) - 세탁(洗濯)에 의한 색상변화(色相變化), 세탁견뢰도(洗濯堅牢度)와 마찰견뢰도(摩擦堅牢度) 특성(特性)에 관(關)하여 -)

  • Lee, Dong-Min;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.9 no.2
    • /
    • pp.71-83
    • /
    • 2005
  • In this study, we reviewed the color changes accompanying the laundering, wash fastness, and abrasion fastness of chitosan-treated cochineal-dyed fabrics. The treatment methods were classified into two based on the chitosan treatment: (Method 1): fabric specimens were pre-treated with chitosan prior to the dyeing procedure in salt form. (Method 2): the state of chitosan acid salt formation, coated on the yarn surface, was destroyed and neutralized prior to the dyeing process. The changes in the chitosan treatment methods bear more important meaning in view of the durability. In Method 1, it is highly likely for the chitosan to be detached from the surface by water during laundering since the chitosan is coated as acid salt state. In Method 2, the resistance d the chitosan to water was supposed to revive since the chitosan would return to its original state. Differences in the resistance of the chitosan treatrrent, however, according to the Method 1 and Method 2, fell short of our expectations. In Method 2, the wash fastness did not improve as we expected since the bond between the fibers comprising fabric specimens and the chitosan is not high even if the chitosan itself has high resistance to water.

Analysis of LRFD Resistance Factor for Shallow Foundation on Weathered Soil Ground (풍화토지반 얕은기초에 대한 LRFD 저항계수 분석)

  • Kim, Donggun;Kim, Huntae;Suh, Jeeweon;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.5-11
    • /
    • 2015
  • Recently the necessity of developing the Load and Resistance Factor Design (LRFD) for shallow foundation has been raised to implement to the domestic design codes related to geotechnical engineering since the limit state design is requested as international technical standard for the foundation of structures. In this study, applicability of LRFD for shallow foundation on weathered soils was investigated and resistance factor for this case was proposed. The quantitative analyses on the uncertainty and resistance bias for shallow foundation on weathered soil ground were performed by collecting the statistical data about domestic case studies for design and construction of shallow foundation. Reliability analyses for shallow foundation were first performed using FDA (First-order Design value Approach) method. Resistance factors were calibrated using the load factors obtained from the specifications of shallow foundations on weathered soil ground. The influence of the load factors developed in this study on the resistance factors were discussed by comparing with the resistance factor obtained from using AASHTO load factors.

An Evaluation on the Chloride Resistance of Concrete Footing at Coastal Area -Comparision of Performance in Korea Building Code(KBC)- (해안인접지역 기초 구조물콘크리트의 내염해 성능 평가 -건축구조기준과의 성능비교-)

  • Park, Yong-Kyu;Yoon, Gi-Won;Kim, Hyun-Woo;Kim, Yong-Ro;Song, Young-Chan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.148-149
    • /
    • 2016
  • In this paper, the increase in chloride resistance of footing concrete at coastal area was evaluated by replacement of Mineral Admixture. In KBC 2009, the footing concrete's minimum specific concrete strength at coastal area is determined to 35MPa. However, this is criteria only based on the strength aspect. Thus, it is not considered to increase the chloride resistance by replacement of Mineral Admixture. According to the test results of chloride ions penetration resistance, 35MPa class concrete with OPC 100% shown inaccessible state. Low-strength (24~30MPa class) concretes with Mineral Admixture, however, presented better performances. In addition, chloride diffusion coefficient tests showed identical appearance. Therefore, the current KBC's chloride resistance criteria based on only concrete strength has to review for the reason it can cause many problems (ex. cost increases by growing concrete strength and the environmental issues by a lot of cement use).

  • PDF

Experimental investigations on the resistance performance of a high-speed partial air cushion supported catamaran

  • Yang, Jinglei;Lin, Zhuang;Li, Ping;Guo, Zhiqun;Sun, Hanbing;Yang, Dongmei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • The partial air cushion supported catamaran (PACSCAT) is a novel Surface Effect Ship (SES) and possesses distinctive resistance performance due to the presence of planing bottom. In this paper, the design of PACSCAT and air cushion system are described in detail. Model tests were carried out for Froude numbers ranging from 0.1 to 1.11, the focus is on the influence of air cushion system on resistance characteristics. Drag-reducing effect of air cushion system was proved by means of contrast tests in cuhionborne and non-cushionborne mode. Wave-making characteristics reflect that the PACSCAT would eventually enter planing regime, in which the air could just escape under the seals and the hull body could operate in a steady state. To acquire different air cushion pressure, air flow rate and leakage height were adjusted during tests. Experimental results show that the resistance performance in planing regime would decrease evidently as the increased air flow rate, however, the scheme with medium leakage height presents the best resistance performance in the hump region.

Electrical characteristics of polysilicon thin film transistors with PNP gate (PNP 게이트를 가지는 폴리 실리콘 박막 트랜지스터의 전기적 특성)

  • 민병혁;박철민;한민구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.96-106
    • /
    • 1996
  • One of the major problems for poly-Si TFTs is the large off state leakage current. LDD (lightly doped drain) and offset gated structures have been employed in order to reduce the leakage current. However, these structures also redcue the oN current significantly due to the extra series resistance caussed by the LDD or offset region. It is desirable to have a device which would have the properties of the offset gated structure in the OFF state, while behaving like a fully gated device in the oN state. Therefore, we propose a new thin film transistor with pnp junction gate which reduce the leakage curretn during the OFF state without sacrificing the ON current during the ON state.

  • PDF

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant

  • Jatoi, Ghulam Hussain;Lihua, Guo;Xiufen, Yang;Gadhi, Muswar Ali;Keerio, Azhar Uddin;Abdulle, Yusuf Ali;Qiu, Dewen
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.208-218
    • /
    • 2019
  • Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species ($H_2O_2$ and $O_2{^-}$) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.