Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.11.2018.0276

A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant  

Jatoi, Ghulam Hussain (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Lihua, Guo (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Xiufen, Yang (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Gadhi, Muswar Ali (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Keerio, Azhar Uddin (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Abdulle, Yusuf Ali (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Qiu, Dewen (State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences)
Publication Information
The Plant Pathology Journal / v.35, no.3, 2019 , pp. 208-218 More about this Journal
Abstract
Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species ($H_2O_2$ and $O_2{^-}$) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.
Keywords
Botrytis cinereal; Brevibacillus laterosporus A60; novel protein; PeBL2; protein elicitor activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, Y., Yan, X., Guo, H., Zhao, F. and Huang, L. 2018a. A novel protein elicitor BAR11 from Saccharothrix yanglingensis Hhs.015 improves plant resistance to pathogens and interacts with catalases as targets. Front. Microbiol. 9:700.   DOI
2 Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q. R. and Zhang, R. 2018. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Mol. Plant-Microbe Interact. 31:560-567.   DOI
3 Zhang, H., Yu, P., Zhao, J., Jiang, H., Wang, H., Zhu, Y., Botella, M. A., Samaj, J., Li, C. and Lin, J. 2018b. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance. New Phytol. 217:799-812.   DOI
4 Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J. and Gao, Q. 2011. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol. Biol. Rep. 38:2549-2556.   DOI
5 Shilina, J. V., Gushcha, M. I., Molozhava, O. S., Litvinov, S. V., and Dmitriev, A. P. 2018. Erratum to: "Induction of Arabidopsis thaliana resistance to pathogenic bacteria by lipopolysaccharide and salicylic acid". Cytol. Genet. 52:322.   DOI
6 Smolinska, U. and Kowalska, B. 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum - a review. J. Plant Pathol. 100:1-12.   DOI
7 Song, Z., Liu, K., Lu, C., Yu, J., Ju, R. and Liu, X. 2011. Isolation and characterization of a potential biocontrol Brevibacillus laterosporus. Afr. J. Microbiol. Res. 5:2675-2681.   DOI
8 Somasundaram, V., Basudhar, D., Bharadwaj, G., No, J. H., Ridnour, L. A., Cheng, R., Fujita, M., Thomas, D. D., Anderson, S. K., and McVicar, D. W. and Wink, D. A. 2018. Molecular mechanisms of nitric oxide in cancer progression, signal transduction and metabolism. Antioxid. Redox Signal. 30:1124-1143.
9 Lai, Y. S., Renna, L., Yarema, J., Ruberti, C., He, S. Y. and Brandizzi, F. 2018. Salicylic acid-independent role of NPR1 is required for protection from proteotoxic stress in the plant endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 115:E5203-E5212.   DOI
10 Ma, L., Zhang, H. Y., Zhou, X. K., Yang, C. G., Zheng, S. C., Duo, J. L. and Mo, M. H. 2018. Biological control tobacco bacterial wilt and black shank and root colonization by bio-organic fertilizer containing bacterium Pseudomonas aeruginosa NXHG29. Appl. Soil Ecol. 129:136-144.   DOI
11 Allen, R. L., Bittner-Eddy, P. D., Grenville-Briggs, L. J., Meitz, J. C., Rehmany, A. P., Rose, L. E. and Beynon, J. L. 2004. Hostparasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957-1960.   DOI
12 Cui, A. L., Hu, X. X., Gao, Y., Jin, J., Yi, H., Wang, X. K., Nie, T. Y., Chen, Y., He, Q. Y., Guo, H. F., Jiang, J. D., You, X. F. and Li, Z. R. 2018. Synthesis and bioactivity investigation of the individual components of cyclic lipopeptide antibiotics. J. Med. Chem. 61:1845-1857.   DOI
13 de Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. and Zahner, V. 2004. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl. Environ. Microbiol. 70:6657-6664.   DOI
14 Srivastava, N., Gonugunta, V. K., Puli, M. R. and Raghavendra, A. S. 2009. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum. Planta 229:757-765.   DOI
15 Diez-Navajas, A. M., Wiedemann-Merdinoglu, S., Greif, C. and Merdinoglu, D. 2008. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology 98:776-780.   DOI
16 Ellis, J. G., Rafiqi, M., Gan, P., Chakrabarti, A. and Dodds, P. N. 2009. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr. Opin. Plant Biol. 12:399-405.   DOI
17 Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D. and Pugin, A. 2006. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 19:711-724.   DOI
18 Akkopru, A. and Demir, S. 2005. Biological control of fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153:544-550.   DOI
19 Anbu, P. 2016. Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04. Braz. J. Med. Biol. Res. 49:e5178.   DOI
20 Zhang, Y. H., Yang, X. F., Liu, Q., Qiu, D. W., Zhang, Y. L., Zeng, H. M., Yuan, J. J. and Mao, J. J. 2010. Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol. Res. 165:142-151.   DOI
21 Zhao, J., Davis, L. C. and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23:283-333.   DOI
22 Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI
23 Mao, J., Liu, Q., Yang, X., Long, C., Zhao, M., Zeng, H., Liu, H., Yuan, J. and Qiu, D. 2010. Purification and expression of a protein elicitor from Alternaria tenuissima and elicitormediated defence responses in tobacco. Ann. Appl. Biol. 156:411-420.   DOI
24 Marche, M. G., Mura, M. E. and Ruiu, L. 2016. Brevibacillus laterosporus inside the insect body: Beneficial resident or pathogenic outsider?. J. Invertebr. Pathol. 137:58-61.   DOI
25 Nurnberger, T. 1999. Signal perception in plant pathogen defense. Cell. Mol. Life Sci. 55:167-182.   DOI
26 Kloeppe, J. W., Rodriguez-Kabana, R., Zehnder, A. W., Murphy, J. F., Sikora, E. and Fernandez, C. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust. Plant Pathol. 28:21-26.   DOI
27 Glazebrook, J. 2001. Genes controlling expression of defense responses in Arabidopsis. Curr. Opin. Plant Biol. 4:301-308.   DOI
28 Wang, H., Yang, X., Guo, L., Zeng, H. and Qiu, D. 2015. PeBL1, a novel protein elicitor from Brevibacillus laterosporus strain A60, activates defense responses and systemic resistance in Nicotiana benthamiana. Appl. Environ. Microbiol. 81:2706-2716.   DOI
29 Zhao, J., Guo, L., Zeng, H., Yang, X., Yuan, J., Shi, H., Xiong, Y., Chen, M., Han, L. and Qiu, D. 2012. Purification and characterization of a novel antimicrobial peptide from Brevibacillus laterosporus strain A60. Peptides 33:206-211.   DOI
30 van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483.   DOI
31 Wang, N., Liu, M., Guo, L., Yang, X. and Qiu, D. 2016. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in Tobacco. Int. J. Biol. Sci. 12:757-767.   DOI
32 Wei, C., Zhu, L., Wen, J., Yi, B., Ma, C., Tu, J., Shen, J. and Fu, T. 2018. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus. Plant Sci. 270:97-113.   DOI
33 Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88.   DOI
34 Ueki, A., Kaku, N. and Ueki, K. 2018. Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Appl. Microbiol. Biotechnol. 102:6309-6318.   DOI
35 Thordal-Christensen, H., Zhang, Z., Wei, Y. and Collinge, D. B. 1997. Subcellular localization of $H_2O_2$ in plants. $H_2O_2$ accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194.   DOI
36 Tian, B., Li, N., Lian, L., Liu, J., Yang, J. and Zhang, K. Q. 2006. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch. Microbiol. 186:297-305.   DOI
37 Torres, M. A. 2010. ROS in biotic interactions. Physiol. Plant. 138:414-429.   DOI
38 Pieterse, C, M. J., Leon-Reyes, A., Van der Ent, S. and Van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316.   DOI
39 Qiu, D., Mao, J., Yang, X. and Zeng, H. 2009. Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep. 28:925-933.   DOI
40 Rahantaniaina, M. S., Li, S., Chatel-Innocenti, G., Tuzet, A., Mhamdi, A., Vanacker, H. and Noctor, G. 2017. Glutathione oxidation in response to intracellular $H_2O_2$: key but overlapping roles for dehydroascorbate reductases. Plant Signal. Behav. 12:e1356531.   DOI
41 Boka, K. and Orban, N. 2007. New aspect of $H_2O_2$ signaling. Plant Signal. Behav. 2:498-500.   DOI
42 Huang, X., Tian, B., Niu, Q., Yang, J., Zhang, L. and Zhang, K. 2005. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 156:719-727.   DOI
43 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319.   DOI
44 Hazotte, A., Peron, O., Gaudin, P., Abdelouas, A. and Lebeau, T. 2018. Effect of Pseudomonas fluorescens and pyoverdine on the phytoextraction of cesium by red clover in soil pots and hydroponics. Environ. Sci. Pollut. Res. 25:20680-20690.   DOI
45 Hu, Y., Li, Y., Hou, F., Wan, D., Cheng, Y., Han, Y., Gao, Y., Liu, J., Guo, Y., Xiao, S., Wang, Y. and Wen, Y. Q. 2018. Ectopic expression of Arabidopsis broad-spectrum resistance gene RPW8.2 improves the resistance to powdery mildew in grapevine (Vitis vinifera). Plant Sci. 267:20-31.   DOI
46 Asai, S., Ohta, K. and Yoshioka, H. 2008. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390-1406.   DOI
47 Blumwald, E., Aharon, G. S. and Lam, B. C. 1998. Early signal transduction pathways in plant-pathogen interactions. Trends Plant Sci. 3:342-346.   DOI
48 Riera, N., Wang, H., Li, Y., Li, J., Pelz-Stelinski, K. and Wang, N. 2018. Induced systemic resistance against citrus canker disease by rhizospheric bacteria. Phytopathology 108:1038-1045.   DOI
49 Ryu, C. M., Pare, F. P. W. and Kloepper, J. W. 2005. Invisible signals from the underground: Bacterial volatiles elicit plant growth promotion and induce systemic resistance. Plant Pathol. J. 21:7-12.   DOI
50 Huang, C. J., Tsay, J. F., Chang, S. Y., Yang, H. P., Wu, W. S. and Chen, C. Y. 2012. Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag. Sci. 68:1306-1310.   DOI
51 Islam, W., Noman, A., Qasim, M. and Wang, L. 2018. Plant responses to pathogen attack: Small RNAs in focus. Int. J. Mol. Sci. 19:E515.   DOI
52 Pieterse, C. M. J. and van Loon, L. C. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4:52-58.   DOI
53 Saikia, R., Gogoi, D. K., Mazumder, S., Yadav, A., Sarma, R. K., Bora, T. C. and Gogoi, B. K. 2011. Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol. Res. 166:216-225.   DOI
54 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
55 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9:1084-1090.   DOI
56 Kukawka, R., Czerwoniec, P., Lewandowski, P., Pospieszny, H. and Smiglak, M. 2018. New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New J. Chem. 42:11984-11990.   DOI
57 Kulye, M., Liu, H., Zhang, Y., Zeng, H., Yang, X. and Qiu, D. 2012. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ. 35:2104-2120.   DOI
58 Cct, R., Vermeulen, J. P., Vels, A., Himmelbach, A., Mascher, M. and Niks, R. E. 2018. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL. Theor. Appl. Genet. 131:1031-1045.   DOI
59 Jackson, S. N., Wang, H. Y., and Woods, A. S. 2005. Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal. Chem. 77:4523-4527.   DOI
60 Jain, S., Vaishnav, A., Kasotia, A., Kumari, S., Gaur, R. K. and Choudhary, D. K. 2013. Bacteria-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc. Natl. Acad. Sci. India 83:561-567.
61 Chandel, S., Allan, E. J. and Woodward, S. 2010. Biological Control of Fusarium oxysporum f.sp. lycopersici on Tomato by Brevibacillus brevis. J. Phytopathol. 158:470-478.   DOI
62 Chen, M., Zhang, C., Zi, Q., Qiu, D., Liu, W. and Zeng, H. 2014. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Rep. 33:1865-1879.   DOI