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A Mechanical Sensorless Vector-Controlled Induction Motor System
with Parameter Identification by the Aid of Image Processor

Mineo Tsuji*, Shuo Chen' , Tatsunori Motoo*, Yuki Kawabe* and Shin-ichi Hamasaki*

Abstract - This paper presents a mechanical sensorless vector-controlled system with parameter
identification by the aid of image processor. Based on the flux observer and the model reference adap-
tive system method, the proposed sensorless system includes rotor speed estimation and stator resistance
identification using flux errors. Since the mathematical model of this system is constructed in a syn-
chronously rotating reference frame, a linear model is easily derived for analyzing the system stability,
including motor operating state and parameter variations. Because it is difficult to identify rotor resis-
tance simultaneously while estimating rotor speed, a low-accuracy image processor is used fo measure
the mechanical axis position for calculating the rotor speed at a steady-state operation. The rotor resis-
tance is identified by the error between the estimated speed using the estimated flux and the calculated
speed using the image processor. Finally, the validity of this proposed system has been proven through

experimentation.
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1. Introduction

In a vector-controlled induction motor (IM) drive, accu-
rate knowledge of the machine parameters is required to
ensure correct alignment of the stator current vector to the
rotor flux vector, to decouple the flux- and torque-pro-
ducing current and to tune the current control loops [1]-[3].
A speed sensor is usually requisite for vector control. In
practical applications, the use of speed sensor does have
many problems, especially in hostile environments. Vec-
tor-controlled induction motor drives without speed sensor
have become an attractive and commercially expanding
technology in the past years [4-5]. In a speed sensorless
vector control system, it is difficult to identify rotor resis-
tance and estimate rotor speed simultaneously. However,
the actual speed has been greatly influenced by the rotor
resistance being varied with the inner temperature of IM. It
is necessary to obtain the actual value of rotor resistance for
torque and speed control accuracy.

On the other hand, with the rapid development of semi-
conductor and microprocessor technology, image process-
ing technology has been widely used in industrial applica-
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tions, such as factory automation system and industrial ro-
bot. The advantages of image process are flexibility and
non-touched measurement. Charge-coupled device (CCD)
image sensor has advantages of small size, high reliability
and low cost. It is easy to mount a CCD image sensor on the
robot arm or front end of manipulator or other requisite place
for monitoring and regulating. In general, the response of
image processing is slow because a long processing time is
requisite and the information obtained from image processing
has not high accuracy. So it is difficult to replace the me-
chanical position sensor with image processor in servo system.
Our purpose is to develop a high-performance adjust-
able-speed system using vector-controlled induction motor
drive replacing the mechanical speed sensor with an image
processor. In this paper, we introduce a speed sensorless
vector-controlled induction motor system. Based on the flux
observer and the model reference adaptive system (MRAS)
method, this system includes a rotor speed estimator and
stator resistance identifier using flux errors [6]. Since the
mathematical model of this system is constructed in a syn-
chronously rotating reference frame, a linear model is easily
derived for analyzing the system stability, including motor
operating state and parameter variations. This system can
work in motoring and regenerating modes. The adjust-
able-speed range is around 1:200. The advantages are sim-
plicity and avoidance of problems caused by using only a
voltage model. Because it is difficult to identify rotor re-
sistance simultaneously while estimating rotor speed, we
use a low-accuracy image processor to measure the me-
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chanical axis position for calculating the rotor speed at a
steady-state operation. The rotor resistance is identified by
the error between the estimated speed using the estimated
flux and the calculated speed using the image processor.
Finally, the effectiveness of this proposed system is verified
by experimentation.

2. Proposed System

The proposed system shown in Fig. 1 includes three parts.
The first part is a speed sensorless vector-controlled system
of speed estimator and stator resistance identifier. The
second is a speed calculator by the aid of image processor.
The third is a rotor resistance identifier by using speed error.
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Fig. 1 Block diagram of the proposed system

2.1 Speed Estimation and Stator Resistance Identi-
fication

An induction motor can be described by the following
equations in an arbitrary reference frame [7]:

voltage model

M M
e =R +oL p)i,—wolL, it pvu—ov, ()

r r

. ., M M
e, =00l i, +(R +oLp)i, OVt PV )]

r Lr
current model
| 1
0=-—Mi +(+p) Y= (@-0) v, (3)
1 1
0=—T—Mlsq+(a)_a)r) l//rd+(1__+p) W"I (4)

where O'=1—M2/(LSL,), t,=L /R, p=d/dr.

In this paper, a d-q synchronously rotating reference
frame with respect to the rotor flux computed by the current

model is chosen. So, the g-axis flux quc of this model is

zero. Letting the reference maganetizing current i, be

constant, (3) and (4) can be rewritten as

Vg =Mi, )

(6)

where @, is the estimated rotor speed and the superscript

[TRL

x” denotes the controller’s variables.

To estimate the fluxes from the voltage model of (1) and
(2), an integrating process is needed. However, it is difficult
to maintain the system stability of a pure integrator due to
motor parameter variation. In order to overcome this prob-
lem, the voltage model is modified by the current model
from the viewpoint of the observer theory as follows [6]:
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where T is the reciprocal of the flux observer gain.

The estimated g-axis rotor flux l//,: computed by (8)

should be zero because y,, must be equal to y, (=0 )

when the estimated speed is correct. According the MRAS
theory, the rotor speed can be estimated by

1, oy
Lo ©)

@

o =K, (1+

In the above equation, 1//,; must converge to zero by

proportional plus integral (PI) regulator. The d-axis flux
error between the the adjustable model (votage model) and
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the reference model (current model) can be considered to be
caused by the stator resistance variation. By analyzing the
flux error at a steady-state operation, a stator resistance
identificaion algorithm using the d-axis flux error can be
expressed as

PR, =sign(@ i, ), W,y ~¥,5) (10)

where g is the identification gain. sign(a)*i:q) is +1 in
motoring mode and -1 in regenerating mode. The stator re-

sistance identification and the speed estimation can be
achieved simultaneously.

2.2 Speed Calculation by Image Processor

Fig. 2 shows the image processing configuration. A
commercial image sensor (CCD camera) is used to take a
picture of the white-black mark stuck on the motor axis, as
shown in Fig. 3. After decoding and binary processing, the
axis position can be calculated by the proportion of
white-dot amount and black-dot amount in one picture. If

the axis position is #(k —1) at a moment and #(k) after a

period of 7, the rotor speed can be calculated by

, =—9(k)_ﬁ(k_l) : (11)

Here o, means the calculated speed by using the image
processor. As the position calculator output is only 4 bit,
1-bit change presents that the axis rotates 22.5 degrees.
Though the detecting accuracy is very poor, it can be im-
proved by a relatively long period, compared with the
sampling period of the overall system. Therefore, this cal-
culated speed can be only used at a steady-state operation.

2.3 Rotor Resistance Identification

In (6), the angular velocity @ is modified by the speed
sensorless vector-controlled system and must be constant at
a steady state. So (6) can be rewritten

Position
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Decoder Binarization Dot counter Position
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Fig. 2 Image processing configuration
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@ =6 +—1i (12)

where R is the controller’s value of rotor resistance. In this
system, @, is estimated by (9) and the error between @,
and @, (speed command) is used to modify the
torque-producing current by PI regulator. Therefore, &,
must be converged to @, whether the actual values of stator

and rotor resistances vary. Using (10), the stator resistance
can be identified and would not influence the flux
estimation. The error between @, and the actual speed @,
can be considered to be caused by the rotor resistance
variation and increases with load raising. Since the
calculated speed @, is equal to @, and the current control is

ideal at a steady state, (4) can be rewritten as

ki (13)
rlsd

o =+

where R, is the actual value of rotor resistance. From (12)
and (13), the following equation can be obtained:

R -R =iS‘f#(cb -w,). (14)
Iy

(14) shows that w, <&, if R >R, while operating at
i;, > 0. In contrast, @, > &, if R, > R, while operating at
i:q < 0. Therefore, an identification algorithm of rotor re-

sistance identification using the error between @, and @, is

proposed as follows:
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PR =sign(i,, )1, (6, - ®,) (15)

where g, is the identification gain of rotor resistance.

sign(i:q) is +1 when i, >0, and -1 when i, <0.

3. Stability Analysis

The stability analysis of the proposed system shown in
Fig.1 is presented. By taking a small perturbation at a
steady-state operating point, a linear model of the proposed
system can be deduced. To simplify the analysis, the fol-
lowing assumptions are considered.

1) The motor have those nominal values except for the
stator and rotor resistances.

2) The motor actual voltages are equal to the voltages’
commands and the d-g synchronously rotating refer-
ence frame is chosen, the d-g voltages are given by

*

esd = e.:d > esq = esq - (16)
The induction motor can be described by (1)-(4) and the
equation of motion [8]. By using these equations, the linear
model of the motor can be derived as follow:
PAx, = AAx, +BAu +BAT, a7
where
Axs =|:Aisd Aisq Al//rd Al//rq Awr ]T

Au, =[Ad, A, Do

Here T, is the load torque. The linear model of the con-

troller is expressed is
PAZ=AAx,+AAz+B,Au +B Aw, (18)
Au,=FAx,+FAz+FAw, (19)
where
Az=[Ae, Ae, Ae, e, Ayl Ay .

Here, Ae,, Ae, , Ae,,, and Ae, are produced by PI

regulators for speed estimation, speed control, and current
control, respectively. From (17)-(19), the linear model of
the whole system can be written as follows:

pAx=AAx+BAu+ B, AT, (20)

where

Ax = [AXST AZT]T
AS+BSFX BSF'z
A +BF, A +B.F,

BSF;' Bl
B= B, =| .
B.F.+B, 0

The output equation and the speed transfer function de-
rived from the above linear equations can be given by

Aw, = CAx @

A i(sI - A)B
G(s)= a)z _ Cadj(sI — A) '
Aw, |sT — A|

(22)

where

Cc=[0 000100000 0]
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Fig. 4 Trajectories of poles and zeros with R, change
(In motoring mode)

Fig. 4 shows the root trajectories of the poles and zeros on
the s plane calculated from (22) in which R is changed

from 0.5R_ to 2.0R

ro ?

and R is the nominal value of R .
The motor is operating in motoring mode. When R’ is
much larger than R_, the pole F, is near the imaginary axis.

The dynamic characteristic is influenced by R, . Fig. 5
shows the root trajectories of the poles and zeros in which

the motor is operating in regenerating mode. When R’ is

much larger than1.25R_, the pole P is moved in an un-
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Fig. 5 Trajectories of poles and zeros with R, change
(In regenerating mode).

stable region. From this figure, we can know that R, also

has influence on system stability in low-speed regenerating
operation, and its identification is important and necessary.
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4. Experimental Results

The proposed control system was implemented by a
DSP (TMS320C32), as shown in Fig. 6. For speed control,
two current sensors are used to detect the motor’s phase
currents and a voltage sensor is used to detect the dc link
voltage of PWM inverter. The DSP controller receives the
detected current signals and estimates the rotor speed for
speed control and identifies the stator resistance. The posi-
tion information from the speed sensor (Encoder) is sent to
the DSP controller for computing the motor actual speed
and checking the validity of the speed sensorless control
system. The position information from the image processor
is also sent to the DSP controller for calculating the motor
speed and identifying the rotor resistance. The sampling or
interrupting period is 200 us. The electronic exposure pe-

riod of the CCD camera used as the image sensor is 1/60 s.
Fig. 7 shows the experimental setup.
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Fig. 7 Experimental setup
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Fig. 8 Transient response of R, identification
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Fig. 9 Transient response of speed step change

4.1 Response of the Speed Sensorless Control System

The experimental results of the speed sensorless control
system have been illustrated in [6]. The results of stator re-
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sistance identification have also been presented in [6]. Here,
we illustrate one of those results. Fig. 8 shows the experi-
mental result of R identification at 50 r/min. The effec-

4.2 Rotor Resistance Identification by Aid of Image
Sensor

tiveness of R, identification is verified by this result. Fig. 10 shows the experimental results of R, identifica-

Fig. 9 shows the experimental waveforms of the actual
speed @, , the estimated speed @, , the calculated speed

tion for 4, =4.0 and @, =550 r/min. The motor is oper-
ating in regenerating mode and the load torque is
—-3.0 N-m. R, identification begins at 2.0 s. In Fig. 10 (a),

600 . . . .
E g5 R’ is setto be 0.3935 Q before R identification.
[ attan s
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Fig. 10 Transient response of R, identification (b) >R
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. . N -12
calculation accuracy, the convergence time of @, is about 12
~— 6
. <
1.0 s. This result shows that @, can be used as the motor 00
actual speed at a steady-state operation but cannot be used at -

. 2
a transient state. Because the electronic exposure period of o

the CCD camera is 1/60 s, the axis position is detected at
every 1/60 s. o, can be correctly calculated only when the
actual speed is below 1200 r/min.

(c) After R identification.
Fig. 11 Transient response of speed step change with R
influence
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In Fig. 10 (b), R is set to be 1.3 Q before R, identi-

fication. Since the electronic exposure period of the CCD
camera is 1/60 s, the @, value is changed at every 1/60 s.

Therefore, the R, identification gain must be set to be a
small value for avoiding great variation of the motor actual
speed and R, is identified at every 1/60 s. The R, identi-
fication time is around 16 s. Although &, and @, shown in
Fig. 10 have some rippies and there are little deflections of
®,, ®,and R after 16 s, the proposed R, identification
algorithm can be considered to work well in regenerating
mode. In addition, even if there is an error between R, and

R’ before R identification, the estimated speed &, is
always converged to @, by PI speed regulator. But the
actual speed w, is deviated from @, because of R, error.
With R identification, R is converged to a constant
value and @, is converged to @, . This result shows that
R, identification is requisite for speed control accuracy.

We are confident that the R identification algorithm using

the image processor is valid in regenerating mode. And this
algorithm can work in motoring mode also.

v
N
[=}

@, (r/min)
=3

1) .
~ 550 ==z

~

@ . (r/min
(=1

-550 .

' —_
NS N

iy (A)

i, (&)

0 0.5 1 1.5 2.5 3 3.5 4

2
1(s)
Fig. 12 Transient response of speed step change

Fig. 11 shows the experimental waveforms of ., @,,

the actual torque-producing current ;

sq ?

and the u-phase
current i, while operating in regenerating mode. Here, the
load torque is —3.0 N-m and @, is changed from 550 to
650 r/min and then back to 550 r/min. In Fig. 11 (a), R, is
set to be 0.3935 Q. In Fig. 11 (b), R is set to be 1.3 Q.

Fig. 11 (c) shows the result after R, identification. Because

R’ is smaller than R, w, shown in Fig. 11 (a) is greater

than @&, when operating at the steady state. In Fig. 11 (b),
o, is smaller than ¢, because of R, > R, . This reason can
be explained by (14). After R, identification, @, shown in
Fig. 11 (c) is well converged to , when operating at a

steady state. This result shows that R, identification is very

important for high accuracy of speed control and the pro-
posed image process is succeeded in improving the per-
formance of vector-controlled induction motor system.

Fig. 12 shows the experimental waveforms of w,, &,,

i, ,and i,.Here, o, is changed from 550 to -550 r/min and

then back to 550 r/min. Operating at 550 r/min, the motor is
in regenerating mode and the load torque is —2.0 N-m.

Operating at -550 r/min, the motor is in motoring mode. The
speed convergence time is around 0.5 s, the i, phase re-

verses at the moment when &, is 0. The four-quadrant

operation and the speed zero crossing is stable.

5. Conclusions

In this paper, a mechanical sensorless vector-controlled
system with the aid of image process for induction motor
has been proposed. For high accuracy of speed and torque
control, a rotor resistance identification algorithm was
proposed by the aid of image processor. The following
points summarize the work presented.

+ Without mechanical sensor, the estimated flux based
on the flux observer was used for speed estimation and
stator resistance identification.

e Instead of a conventional mechanical sensor, the
non-touched position detecting method using a
small-size and low-cost CCD image sensor has been
implemented.

» The estimated speed using flux error was used for
speed control. The dynamic characteristic of the pro-
posed system was only determined by the speed sen-
sorless vector controller and not influenced by the
low-performance image processor.

+ According to the study of the linear model, rotor re-
sistance has influenced on system stability in
low-speed regenerating operation and its identification
was important and necessary.

» With parameter identification, the performance of the
proposed system has been greatly improved. And this
system can do its work during both motoring and re-
generating operations.
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Appendix

Three-phase inductor motor parameters used for the ex-
perimental system

R =13Q, R =0787Q, L =0115H, L, =0.115 H
M=011H

rated output power 1.5 kW,
rated torque 838 Nem;
rated current 6.0A,

rated rotational speed 1710 t/min;

pole number ( P) 4;
moment of inertia(.J ) 0.0126 kg * m’.
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