• Title/Summary/Keyword: on-line scheduling

Search Result 171, Processing Time 0.03 seconds

Scheduling Simulator for Semiconductor Fabrication Line (반도체 FAB의 스케줄링 시뮬레이터 개발)

  • Lee, Young-Hoon;Cho, Han-Min;Park, Jong-Kwan;Lee, Byung-Ki
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.437-447
    • /
    • 1999
  • Modeling and system development for the fabrication process in the semiconductor manufacturing is presented in this paper. Maximization of wafer production can be achieved by the wafer flow balance under high utilization of bottleneck machines. Relatively simpler model is developed for the fabrication line by considering main characteristics of logistics. Simulation system is developed to evaluate the line performance such as balance rate, utilization, WIP amount and wafer production. Scheduling rules and input rules are suggested, and tested on the simulation system. We have shown that there exists good combination of scheduling and input rules.

  • PDF

A Stochastic Linear Scheduling Method using Monte Carlo Simulation

  • Soderlund, Chase;Park, Borinara
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.169-173
    • /
    • 2015
  • The linear scheduling method or line-of-balance (LOB) is a popular choice for projects that involve repetitive tasks during project execution. The method, however, produces deterministic schedule that does not convey a range of potential project outcomes under uncertainty. This results from the fact the basic scheduling parameters such as crew production rates are estimated to be deterministic based on single-point value inputs. The current linear scheduling technique, therefore, lacks the capability of reflecting the fluctuating nature of the project operation. In this paper the authors address the issue of how the variability of operation and production rates affects schedule outcomes and show a more realistic description of what might be a realistic picture of typical projects. The authors provide a solution by providing a more effective and comprehensive way of incorporating the crew performance variability using a Monte Carlo simulation technique. The simulation outcomes are discussed in terms of how this stochastic approach can overcome the shortcomings of the conventional linear scheduling technique and provide optimum schedule solutions.

  • PDF

Feedrate Scheduling for High Speed Machining Based on an Improved Cutting Force Model (향상된 절삭력 모델을 이용한 고속 가공의 이송속도 스케줄링)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.141-144
    • /
    • 2003
  • This paper proposes an analytical model of off-line feed rate scheduling to obtain an optimum feed rate for high speed machining. Off-line feed rate scheduling is presented as an advanced technology to regulate cutting forces through change of feed per tooth, which directly affects variation of uncut chip thickness. In this paper, the feed rate scheduling model was developed using a mechanistic cutting force model using cutting-condition-independent coefficients. First, it was verified that cutting force coefficients are not changed with respect to cutting speed. Thus, the feed rate scheduling model using the cutting-condition-independent coefficients can be applied to set the proper feed rates for high speed machining as well as normal machining. Experimental results show that the developed fred rate scheduling model makes it possible to maintain the cutting force at a desired level during high speed machining.

  • PDF

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

IRIS Task Scheduling Algorithm Based on Task Selection Policies (태스크 선택정책에 기반을 둔 IRIS 태스크 스케줄링 알고리즘)

  • Shim, Jae-Hong;Choi, Kyung-Hee;Jung, Gi-Hyun
    • The KIPS Transactions:PartA
    • /
    • v.10A no.3
    • /
    • pp.181-188
    • /
    • 2003
  • We propose a heuristic on-line scheduling algorithm for the IRIS (Increasing Reward with Increasing Service) tasks, which has low computation complexity and produces total reward approximated to that of previous on-line optimal algorithms. The previous on-line optimal algorithms for IRIS tasks perform scheduling on all tasks in a system to maximize total reward. Therefore, the complexities of these algorithms are too high to apply them to practical systems handling many tasks. The proposed algorithm doesn´t perform scheduling on all tasks in a system, but on (constant) W´s tasks selected by a predefined task selection policy. The proposed algorithm is based on task selection policies that define how to select tasks to be scheduled. We suggest two simple and intuitive selection policies and a generalized selection policy that integrates previous two selection policies. By narrowing down scheduling scope to only W´s selected tasks, the computation complexity of proposed algorithm can be reduced to O(Wn). However, simulation results for various cases show that it is closed to O(W) on the average.

Resource Augmentation Analysis on Broadcast Scheduling for Requests with Deadlines (마감시간을 가진 요청들에 대한 브로드캐스트 스케줄링의 자원추가 분석)

  • Kim, Jae-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2981-2986
    • /
    • 2015
  • In this paper, there are m servers to carry out broadcasts and the scheduling problem to serve the requests with deadlines is studied. If a server broadcasts a page, then all the requests which require the page are satisfied. A scheduling algorithm shall determine which pages are broadcasted on servers at a time. Its goal is to maximize the sum of weights of requests satisfied within their deadlines. The performance of an on-line algorithm is compared with that of the optimal off-line algorithm which can see all the inputs in advance. In general, the off-line algorithms outperform the on-line algorithms. So we will use the resource augmentation analysis in which the on-line algorithms can utilize more resources. We consider the case that the on-line algorithms can use more servers in this paper.

Modeling and scheduling for FMS using extended petri nets (확장된 Petri-net을 이용한 FMS의 모델링 및 스케쥴링)

  • 안인석;서기성;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.488-492
    • /
    • 1991
  • This paper deals with modeling and scheduling for flexible manufacturing systems(FMS). In modeling extended Petri nets are used to describe various and complex properties. To resolve multiple conflict without predefined properties, such as part selection, machine selection, rule-based scheduling method is introduced. This structure have a capability of on-line scheduling with systematic modeling description.

  • PDF

Work scheduling method by applying knowledge engineering supported by mathematical programming technique

  • Kurihara, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.215-218
    • /
    • 1996
  • In work scheduling problems, scheduling constraints are not absolutely rigid; they may be changed depending on the scheduling aspect effected. In order to cope with changes in scheduling constraints and assignment strategies and to optimize scheduling results quickly, this paper will propose a new scheduling method which combines knowledge engineering and mathematical programming techniques.

  • PDF

Scheduling for a Two-Machine, M-Parallel Flow Shop to Minimize Makesan

  • Lee, Dong Hoon;Lee, Byung Gun;Joo, Cheol Min;Lee, Woon Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.9-18
    • /
    • 2000
  • This paper considers the problem of two-machine, M-parallel flow shop scheduling to minimize makespan, and proposes a series of heuristic algorithms and a branch and bound algorithm. Two processing times of each job at two machines on each line are identical on any line. Since each flow-shop line consists of two machines, Johnson's sequence is optimal for each flow-shop line. Heuristic algorithms are developed in this paper by combining a "list scheduling" method and a "local search with global evaluation" method. Numerical experiments show that the proposed heuristics can efficiently give optimal or near-optimal schedules with high accuracy. with high accuracy.

  • PDF

Petri nets modeling and dynamic scheduling for the back-end line in semiconductor manufacturing (반도체 후공정 라인의 페트리 네트 모델링과 동적 스케쥴링)

  • Jang, Seok-Ho;Hwang, U-Guk;Park, Seung-Gyu;Go, Taek-Beom;Gu, Yeong-Mo;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.724-733
    • /
    • 1999
  • An effective method of system modeling and dynamic scheduling for the back-end line of semiconductor manufacturing is proposed. The virtual factory, describing semiconductor manufacturing line, is designed in detail, and then a Petri net model simulator is developed for operation and control of the modular cells of the virtual factory. The petri net model is a colored timed Petri nets (CTPNs). The simulator will be utilized to analyze and evaluate various dynamic status and operatons of manufacturing environments. The dynamic schedulaer has a hierarchical structure with the higher for planning level and the lower for dynamic scheduling level. The genetic algorithm is applied to extract optimal conditions of the scheduling algorithm. The proposed dynamic scheduling is able to realize the semiconductor manufacturing environments for the diversity of products, the variety of orders by many customers, the flexibility of order change by changing market conditions, the complexity of manufacturing processes, and the uncertainty of manufacturing resources. The proposed method of dynamic scheduling is more effective and useful in dealing with such recent pressing requirements including on-time delivery, quick response, and flexibility.

  • PDF