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Abstract

This paper considers the problem of two-machine, M-parallel flow shop scheduling to minimize
makespan, and proposes a series of heuristic algorithms and a branch and bound algorithm. Two
processing times of each job at two machines on each line are identical on any line. Since each
flow-shop line consists of two machines, Johnson's sequence is optimal for each flow-shop line.
Heuristic algorithms are developed in this paper by combining a "list scheduling” method and a
"local search with global evaluation” method. Numerical experiments show that the proposed
heuristics can efficiently give optimal or near-optimal schedules with high accuracy.
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1. Introduction

Flow shop scheduling to minimize makespan is one of traditional scheduling problems and is
recently extended to some modified versions such as (i) flow shop scheduling with parallel machines
at each stage [11[21{5], (i) parallel flow shop scheduling {4]{7], and (iii) machining-assembly flow
shop scheduling[31(6]. The first version of flow shop scheduling is sometimes called the"hybrid flow
shop scheduling” [2]. This type of flow shop is employed to increase the capacity of a bottleneck
stage by installing identical machines in parallel at this stage. If it is required to increase the
capacity of the whole flow shop line, the second type of flow shop may be introduced to double its
capacity.

Sundararaghavan et al. [7] proposed a heuristic algorithm for providing near optimal schedules to a
parallel non-identical flow shop scheduling problem, which can be easily transformed into the above
identical case. Although they concluded that the performance of their heuristic was good, their
numerical experiments were so restricted. For instance, the coefficient of deviation of processing
times is so small that their conclusion can not be extended to general cases. Therefore, we
proposed a more effective heuristic algorithm to the parallel identical flow shop scheduling problem
by combining a “list scheduling” method and a “local search with global evaluation” method {4].
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2. Scheduling Model

We consider parallel identical flow-shop lines with the following conditions:
(1) Each job can be processed by any one of L flow-shop lines consisting of two
machines M, j=12,£=1~L '
(2) Processing times of job J; at machines M,; j=1,2, denoted by p; =12, are
identical on any flow-shop line, that is, independent of £ .
The criterion is to minimize makespan F ., the smallest completion time among L
flow-shop lines.
Notations used in this paper are given below.
s, : partial schedule on line £; s = (s}, 55 .51
J(s) : a set of jobs included in schedule s
S¢(q  Job number sequenced at position 7 in s,, i=1~{J(s,)|
ty;(sy) : completion time at machine M ,; under s,

M(s) : makespan for partial schedule s ( F . (s)= M(s), if s is a whole schedule.)

s : any schedule on line ¢ for remaining jobs; s = ( s, Sz, Sz)

3. Branch and Bound Algorithm

Since Johnson's rule provides an optimal schedule to minimize makespan in each two-machine
flow-shop line once job assignment has been finished, it suffices to search all combinations of job
assignment among flow-shop lines. Systematic enumeration of the whole combinations of job
assignment can be implemented by modifying the branching method provided by Brah -and
Hunsucker [11.

A sample branching tree for the case of (N,L)= (4,2) is shown in Figure 1, where a square

denotes job assignment to the next new flow-shop line and a circle denotes job assignment to the
current line. The number in any circle or any square stands for the job number assigned to the
corresponding line. The branching rules are as follows:
(1) The source node is a square node with the first job Jj; (2) Child nodes include only one square
node including job with the smallest job number in the remaining jobs; (3) When the Lth square
node is generated on any path, all the remaining jobs are assigned to the current line and
branching along this path is terminated; (4) Any path includes just L square nodes, that is, if the
number of remaining jobs is equal to the number of new lines, all remaining jobs are assigned to
the new lines one by one and the path is closed; (5) Any remaining job with job number larger
than the job number in the parent node can generate a new circle node, as long as no condition in
rule (3) or{4) is not satisfied.

Consider a combination of a partial schedule s and any schedule s including all remaining jobs,
denoted by sl s. Since Johnson's sequence is optimal for each line under a given job assignment,
any set of jobs assigned to each line, J(s,ll Ts‘(), should be resequenced according to Johnson's
rule, resulting in the schedule denoted by [/ (sl Ee)]", £ =1~L, and the following relationship

holds: Foa ([7(slIHI1") <= Foa(sll's). However, if all jobs are renumbered according to
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Johnson's order in advance and if a branching method follows the above rules, we get

UGS = sylisy, ¢ =1~L, and Fpa ([T (1)) = Frac(sll's).

Fig 1. A sample branching tree: (N, L)= (4,2)

Therefore, the following relationships hold:

min Fu (TG = min Frp(slls)

s

= min max max{t“(s.g)“*'M(;e), too(s))+ iZ_ )Diz}

s 1s¢<L eJ(s

%

min max[—Ilj Zl[t“(su)‘f'M(Eu)], _}: Zl[faz(sz)‘f‘ ie;:_ml)izl}

S

> max( [ Z a0+ MUOID] ] Zrats )+ 3]

Assume that a job has been just assigned on line L, with partial schedule s;, at the current
branching node. Then, at this point, Ly—1 partial schedules for lines 1 through Ly—1 have been

determined and there are L — L, lines remains empty with unscheduled jobs J(s). Using this fact

and the above relationship, we get the lower bound for a node with s as follows:

LB(s)= max { max M(sy),

1<e<L

T L G50+ MG

1
L—Ly+1 [trp(so)+ I.Ez](-s)l’iz]}

4. Heuristic Algorithms

Sundararaghavan et al. {7] suggested that the heuristic using a list based on a nonincreasing order
of total processing time is superior to the others and its maximum deviation from the exact solution
is only 3% for N=15. However, in their numerical experiments, processing times were generated
from the uniform distribution on [5,35], decreasing the relative deviation compared to a case
generated form a uniform distribution with a smaller lower limit and a wider range such as [1,100]
used in this paper. Therefore, we proposes new heuristics by (1) constructing some better lists of
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jobs, (2) assigning jobs to a flow-shop line with the smallest makespan calculated on the
assumption that the incumbent job be assigned to each line, (3) making local search with some
modifications of the current list, (4) keeping the best three lists for further search, and (5)
performing all partial schedules on the assumption that all remaining jobs be scheduled through the
smallest-makespan rule given in (2).

For the two-machine flow shop scheduling, we can illustrate many kinds of possible lists as

shown in Figure 2, where " A"and " B” denote the set of jobs with p;;<p;» and with ;> p;s,
respectively. The set Al B stands for the whole set of jobs. the partial list LS ,(4]) denotes a list
[§)]
A

of jobs in A in nondecreasing order of p;;, and LS means its inverse list. Using these partial

lists, we can express Johnson's order as LS ,(4” - LS 1(32). In a similar way, we can construct a list
LSXJLBZ) (or LS ,(4’U+ 5)) by sequencing jobs in nondecreasing (of nonincreasing) order of p;| + p;s,

which is equivalent to the lists constructed by Sundararaghavan et al[5]. Using a min-max type

sequence, we can also construct a list of all jobs in nondecreasing order of min(p;,,p:») (or

max (p; 1, pi2)), denoted by LSTSs(or LST2), respectively.

Although many possible lists can be constructed by combining and modifying these lists, we
employ the following promising lists based on Johnson’s order.

LSA: Johnson's order (LSY + LS ¥)

LSB: Inverse Johnson's order ( LS g) - LS ,(ql))

LSC: Sequence job first in order, starting from job J, with  ppt+ =
max ;e aup( b1+ P;), as shown in Figure 2, and then sequence remaining jobs in LSA order
LSD: Sequence jobs first in LSA order, starting from the above job J, and then
sequence remaining jobs in LSB order

LSE: Sequence all jobs in nondecreasing order of min(py pp) (LSHUs

LSF: Sequence all jobs in nonincreasing order of Max(py+ pp) (LS D)

LSG: Sequence jobs in LS,E‘D - LS ,(3” order

LSH: Sequence jobs in LS? ISP order

Sw LSAVE
4
4 . LSy _ LS{GR
. ke
ILS’(“z)’.A...:.' . 1 Is®
l’iz o @ 3 :; oe
LS ° %
B LSy
©
LS, <« LS
i

Fig 2. Possible lists of jobs
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Let = (PL)=(s; s, .. s1) be a schedule vector generated by assigning next job to a line
with the smallest makespan calculated on the assumption that each incumbent job is
assigned to each line in Johnson's order, one by one according to partial list PL. For
example, in Figure 3(a) where the partial list is given by PL=LS(s)-J.>J,>J, and
(M(s 1), M(s,9)=(7,10) for £ =1; (411) for ¢ =2, and (p;,0:2)=(56) for i=x (6,7) for
1=y, (11,10) for i=z, job J, is assigned to line L, because the resulting makespan
becomes smaller than in case of assigning it to line L,. In a similar manner, jobs J, and
J. are assigned to lines L, and L,, respectively.

If the last two jobs in this list are exchanged with each other, a different schedule is
obtained in the same manner as the above, reducing the makespan as shown in Figure
3(b). If the last job is inserted before the third last job in the original list, the makespan
decreases further as shown in Figure 3(c). This type of reduction will occur when a job
with a large total processing time follows two adjacent jobs with small total processing

times in a list. Therefore, we implement a local search by checking these job-exchanges in
the current list.

Ll s S

M(x) = M(s) + 19

AR J.
Ly ® A 7]
(@) w(LS(s)  Jeo Ty J2)
[ P
A A

T M(x) = M(s) + 17
L| & 17171
b)) w(LS(s) > Jeo Jo° J,)

L L1 J
Loy s =17 T7
| 7 M(x) = M(s) + 14
L,| & T A
(C)?[(Ls(s)°]z°ft°]y)

Fig 3. Basic concept of local search

Local search will generate a lot of candidate partial schedules but only a few partial schedules
are selected for further search. However, some partial schedules may include a part of an optimal
schedule. Therefore, we perform each partial schedule by assigning remaining jobs in the following
manner.
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Global Evaluation I. For a given list LS, a partial list PL and a partial schedule x(PL),

using the assignment rule employed in constructing #(PL), we assign all remaining jobs
to flow shop lines successively according to the remaining list PL( =LS\PL), and evaluate
the tentative value of makespan M(x(PL < PL)).

Global EvaluationlIl. For a given list LS, PL and x(PL), lettering job Ji; be the next
job following PL in LS, we assign Jij to line L, and then we assign all remaining jobs
to lines successively according to PLN\(J (7}, using the assignment rule employed in
constructing x(PL). We denote tentative value of makespan M{z(PL- PL)‘") in this
case. We repeat this evaluation procedure for /=1~L.

Global Evaluation II. Global evaluation I is the same as Global evaluation II except

for replacing Jiy with J;, %= aug {max; <pr(Pi 1+ 0 2)}}, and denoting the tentative value

of makespan M( x(PL - PL)'%)).

Combining the local search method and the global evaluation technique, we propose the
following algorithm, called "Local Search with Global Evaluation(LSGE)” and propose its
algorithm as follows:

¢ Local Search with Global Evaluation )

Step 1. Construct list LS= Jjj3° Jiz = * Jim.(Assume N > L)

Step 2. Set =L, PL=JjyyeJge - °Jiy, and 7(PL)=(JuyeJize = Jiny)

Step 3. Calculate M(7(PL+ PL)) and set 7=x(PL° PL) and UB=M( 7), where
PL=LS\PL satisfying PL- PL = LS.

Step 4. Generate 7(PL - PL)'Y and calculate M(7(PL- PL)'") for ¢ =1~L,
where 7(PL- PL)‘* denotes a schedule obtained by assigning job Jii+y
to line L, after sequencing all jobs in PLb and by continuing to sequence

remaining jobs in PL\{ Ji;+y).

Step 5. If M(z(PL> PL)") < UB, then set 7=z(PL+ PL)'" and UB=M( 7).
Repeat this step for £ =1~L.

Step 6. Generate 7 (PL° PL)'Y and calculate M( 7z (PL - PLYY) for ¢ =1~L,
where 7 (PL- PL)‘Y denotes a schedule obtained by assigning jobs ];,72 = aug
{max; cpr(pi1+0i2)}} to line L, after sequencing all jobs in PL and by
continuing to sequence jobs in PL\{ J}.

Step 7. If M( 7 (PL+ PL)‘*") < UB, then set 7= z(PL°> PL)'" and UB=M( 7).

Repeat this step for ¢ =1~1L.
Step 8. Set i=:i+1 and PL=PL- ]
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Generate 7 (PL) and calculate M( ~(PL)).

Step 10. Construct PL" by exchanging the last two jobs in PL, and PL® by

Step 11.

inserting the last job before the third last job in PL.
Generate z(PL™), k=1,2 and calculate M(z(PL*)), M(x(PL"® -« PL)),
k=1,2

Step 12. If M(z(PL® .+ PL)) < UB, then set 7=2(PL®+ PL) and UB=M( 7).

Step 13.

Step 14.

Repeat this step for &=1,2.
Rename PL, PL", PL'® as PL; j=1~3, so that M(z(PL})) <M(x(PL,))
<M(x( PL3}).
If /=N, then go Step 28.

Step 15. Generate ¢ PL,-°P_L,~)”) in the same way as in Step 4 and calculate

Step 16.

Step 17.

Step 18.

Step 19.
Step 20.
Step 21.
Step 22.

Step 23.

Step 24.

Step 25.

M(z(PL;* PL;)') for ¢ =1~L and j=1~3.
If M(x(PL;+ PL)))<UB, then set 7=x(PL;> PL;)'" and UB=M( 7).
Repeat this step for ¢ =1~L and j=1~3.
Generate x ( PL;e E)(“ in the same way as in Step 6 and calculate
M(x(PL;- PL;)'") for ¢=1~L and j=1~3.
If M(7z(PL;sPL;)"“)<UB, then set 7= x(PL;e PL;)'V and UB =
M( 7). Repeat this step for ¢ =1~L and j=1~3.
Set i=:i+1 and PL,=PL;-J;, i=1~3.
Generate r( PL;) and calculate M(x( PLj)), j=1~3.
Construct PL}"’), k=1,2 for PL;,j=1~3, in the same manner as in Step 10.
Generate 7( PL{®), #=1,2 and calculate M(z( PL{®)), M(x( PL® - 'PL))),
k=1,2 , j=1-3.
If M(x(PL® < PL)) < UB, then set 7=x(PL{® - PL,) and UB=M( 7).
Repeat this step for £=1,2 , s=1~3.
From the lists, PL;, and PL{®, k=1,2 , j=1~3 , select the three values of
M(x(PL})), removing a list so that no same schedule are included. (If such
lists exist, break ties arbitrarily.) Rename these three lists PL; , j=1~3 , so
that M(x{( PL)) <M(x{ PLy)) <M(x(PL3)).
Calculate an indicator LB:
LB=min c;cymax {M(z(PL'))), [2%., M(s{z(PL')) +% .5 51 / L}

where PL’; is a list obtained by removing the last two jobs from PL; and

PL’; = LS \PL'; , and p; = p;; if LS = LSA; p;, if LS = LSB; min(p;,,

Step 26.

P;2) otherwise.

If LB= UB, then go to Step 29.
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Step 27. Return to Step 14.
Step 28. If M(z(PL,))) < UB, then set 7=x(PL,) and M( 7) = M(x( PL))).
Step 29. Stop: 7 is the solution for list LS.

This LSGE algorithm is implemented for the above lists LSA~LSH and the best
solution among them is selected as the final solution of the heuristics.

5. Numerical Experiments

All algorithms are codes in C language and are implemented with Pentium 0 Processor
450MHz. Processing times are generated randomly from the uniform distribution on [1,100].
1000 instances are L=2, J=20. 100 instances are solved for L=3,5, J=20 and L=2,3,5, J=25,30.
The results are shown in Table 1, where "SKV” means the solution obtained by the
heuristic algorithm proposed by Sundararaghavan et al.[7]., "ta” denotes mean relative error
in total, "na” denotes mean relative error in nonoptimal instances, "m” denotes the
maximum relative error, " »%"” denotes the fraction of optimal instances (%) and the
number in [ ] denotes the fraction of optimal solutions obtained by the branch and bound
algorithm within one hour. ‘

For relatively small-sized problems, especially when N=10 (for L=2~5) or L=2 (for
N=10~30), the proposed heuristic algorithm provides optimal schedules efficiently to almost
all instances. The branch and bound(B&B) can one-hour are coincident with those
obtained by Heuristic, meaning that those solutions are optimal or very close to optimal
solutions.

For relatively large-sized problems, when N=15~30 and L=3~5, the Heuristic can also
provide optimal or best solutions to more than half the instances, although the
performance of the one-hour limited B&B deteriorates rapidly as the problem size
increases. The performance of the SKV remains worse than of the Heuristic.
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Table 1. The results of numerical experiments

N HeuristicB& B SKV HeurislicB&B SKV HeuristicB&B SKV
10 L2 L3 LS
ta 0.0000 00000 00277 00002 00000 00370 0.0000 00000 0.0129
na 0.0051 0.0000 0.0307 0.0097 0.0000 0.0425 0.0000 0.0000 0.0419
0.0091  0.0000 0.1525 0.0207  0.0000  0.1905 00000 00000  0.2593
D 993  100.0{100) 98 98.1 100.0(100] 129 1000 100.01100] _ 69.1
15 L=2 L3 L:5
ta 00001  0.0000  0.0277 0.0015  0.0000  0.0384 0.0025 0.0000 0.0445
na 0.0026  0.0000  0.0307 0.0044 00000 0.0388 0.0097 00000 0.0484
m 0.0056  0.0000 0.1020 0.0156  0.0000 0.1155 0.0380  0.0000 0.1861
D 97.8 100.01100] 4.8 66.4 100.01100] 0.9 747 100.01100] 8.1
20 L2 L3 LS
ta 0.0000  0.0000 0.0126 00013  0.0000  0.0289 0.0055  0.0169  0.0502
na 0.0019  0.0000 0.0136 0.0038  0.0000 0.0292 00107 00529  0.0507
m 0.0022  0.0000 0.0664 00122  0.0000 0.0739 0.0325 0.1400 01122
3] 99.1 100.0[100} 7.1 66.0 100.0[100] 1.0 48.0 68.0[31.0] 1.0
25 L-2 L3 L-5
la 0.0000  0.0000  0.0089 00002 01232 00277 00000 02719 00373
na 0.0017  0.0000  0.0095 00029 0.2124  0.0307 0.0000 02719 0.0373
m 0.0018 0.0000 0.0333 0.0047 0.3734 0.1525 0.0000 0.5379 0.1124
D 98.0  100.0[1001 7.0 92.0 4200001 2.0 1000 00[0.0] 00
30 L=2 L3 L-5
ta 0.0000  0.0000  0.0089 0.0000 04121 00163 0.0000 05592  0.0299
na 0.0000 00000  0.0091 0.0000 04121  0.0164 0.0000 05592  0.0293
m 0.0000 0.0000 0.0286 0.0000 0.4743 0.0162 0.0000 1.0809 0.0694
D 1000 100.01100) 3.0 1000 00100} 10 1000  00100] 00

6. Conclusion

A "Local Search with Global Evaluation(LSGE)” heuristic algorithm and a branch and
bound method were proposed in parallel identical flow shop scheduling. Numerical
experiments showed that the proposed heuristic can provide near-optimal solutions
efficiently with high accuracy.
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