• Title/Summary/Keyword: on-chip current-sensing circuit

Search Result 17, Processing Time 0.021 seconds

Current Sensing Circuit of MOSFET Switch for Boost Converter (부스터 변환기를 위한 MOSFET 스위치 전류 감지 회로)

  • Min, Jun-Sik;No, Bo-Mi;Kim, Eui-Jin;Lee, Chan-Soo;Kim, Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.667-670
    • /
    • 2010
  • In this paper, a high voltage current sensing circuit for boost converter is designed and verified by Cadence SPECTRE simulations. The current mirror pair, power and sensing metal-oxide semiconductor field effect transistors (MOSFETs) with size ratio of K, is used in our on-chip current sensing circuit. Very low drain voltages of the current mirror pair should be matched to give accurate current sensing, so a folded-cascode opamp with a PMOS input pair is used in our design. A high voltage high side lateral-diffused MOS transistor (LDMOST) switch is used between the current sensing circuit and power MOSFET to protect the current sensing circuit from the high output voltage. Simulation results using 0.35 ${\mu}m$ BCD process show that current sensing is accurate and the pulse frequency modulation (PFM) boost converter using the proposed current sensing circuit satisfies with the specifications.

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A Fast Response Integrated Current-Sensing Circuit for Peak-Current-Mode Buck Regulator

  • Ha, Jung-Woo;Park, Byeong-Ha;Kong, Bai-Sun;Chun, Jung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.810-817
    • /
    • 2014
  • An on-chip current sensor with fast response time for the peak-current-mode buck regulator is proposed. The initial operating points of the peak current sensor are determined in advance by the valley current level, which is sensed by a valley current sensor. As a result, the proposed current sensor achieves a fast response time of less than 20 ns, and a sensing accuracy of over 90%. Applying the proposed current sensor, the peak-current-mode buck regulator for the mobile application is realized with an operating frequency of 2 MHz, an output voltage of 0.8 V, a maximum load current of 500 mA, and a peak efficiency of over 83%.

A High-Voltage Current-Sensing Circuit for LED Driver IC (LED Driver IC를 위한 고전압 전류감지 회로 설계)

  • Min, Jun-Sik;No, Bo-Mi;Kim, Yeo-Jin;Kim, Yeong-Seuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.14-14
    • /
    • 2010
  • A high voltage current sensing circuit for LED driver IC is designed and verfied by Cadence SPECTRE simulations. The current mirror pair, power and sensing MOSFETs with size ratio of K, is used in our on-chip current sensing circuit. Very low drain voltages of the current mirror pair should be matched to give accurate current sensing, so a folded-cascode opamp with a PMOS input pair is used in our design. A high voltage high side LDMOST switch is used between the current sensing circuit and power MOSFET to protect the current sensing circuit from the high output voltage. Simulation results using 0.35um BCD process show that current sensing is accurate with properly frequency compensated opamp.

  • PDF

Maximum Current Estimation Method for the Backup of Current Sensor Faults

  • Kim, Jae-Yeon;Park, Si-Hyun;Suh, Young-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.201-206
    • /
    • 2020
  • This paper presents a new method for controlling the current of lighting LEDs without current sensors. This method can be used as backup against LED current sensor faults. LED lighting requires a circuit with a constant current in order to maintain the same brightness when the ambient temperature changes. Therefore, we propose a new current estimation method to provide backup in case of current sensor faults based on the calculation of the inductor current. In the fabricated circuit, the average current changes from 144.03 mA to 155.97 mA when the ambient temperature changes from 0℃ to 60℃. The application of this study can enable the fabrication of a driving IC for LEDs in the form of a single chip without sensing resistors. This is expected to reduce the complexity of the peripheral circuit and enable precise feedback control.

A Sensing Scheme Utilizing Current-Mode Comparison for On-Chip DC-DC Converter (온칩 DC-DC 변환기를 위한 전류 비교 방식의 센서)

  • Kim, Hyun-Gil;Song, Ha-Sun;Kim, Bum-Soo;Kim, Dae-Jeong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.529-530
    • /
    • 2006
  • An efficient sensing scheme adoptable in DC-DC converter is described. The output voltage of the whole DC-DC converter is fed back to the input voltage of the sensor. The comparison in the sensor is accomplished by a current push-pull action. With a fixed reference, the comparator can be embodied based on (W/L) ratios. The current-mode scheme benefits the system better than a conventional voltage-mode one in terms of small area, low power consumption.

  • PDF

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

CMOS Integrated Fingerprint Sensor Based on a Ridge Resistivity (CMOS공정으로 집적화된 저항형 지문센서)

  • Jung, Seung-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.571-574
    • /
    • 2008
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.

  • PDF

Fingerprint Sensor Based on a Skin Resistivity with $256{\times}256$ pixel array ($256{\times}256$ 픽셀 어레이 저항형 지문센서)

  • Jung, Seung-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.531-536
    • /
    • 2009
  • In this paper, we propose $256{\times}256$ pixel array fingerprint sensor with an advanced circuits for detecting. The pixel level simple detection circuit converts from a small and variable sensing current to binary voltage out effectively. We minimizes an electrostatic discharge(ESD) influence by applying an effective isolation structure around the unit pixel. The sensor circuit blocks were designed and simulated in standard CMOS $0.35{\mu}m$ process. Full custom layout is performed in the unit sensor pixel and auto placement and routing is performed in the full chip.