• Title/Summary/Keyword: oil-crops

Search Result 124, Processing Time 0.028 seconds

Environmental Factors Affecting Parasitism to Cucumber Powdery Mildew Fungus, Sphaerotheca fusca by Ampelomyces quisqualis 94013 and Its Host Range (Ampelomyces quisqualis 94013의 오이 흰가루병균 기생에 영향을 미치는 환경조건과 기주범위)

  • Lee, Sang-Yeob;Ryu, Jae-Dang;Kim, Hong-Gi
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.167-172
    • /
    • 2005
  • An isolate of Ampelomyces quisqualis 94013 was selected as an effective parasite for biological control against cucumber powdery mildew. Temperature range for the parasitism of A. quisqualis 94013 against cucumber powdery mildew was $12\~30^{\circ}C$, and optimal temperature for that $20\~28^{\circ}C$. In $20\~35\%$ humidity of the greenhouse, parasitic ability of A. quisqualis 94013 against Sphaerotheca fusca was not good. Inoculation tests revealed that A. quisqualis 94013 can parasitize on six species of Sphaerotheca in the 12 crops and Ersiphe cichoracerum in tomato. As host rang of A. quisqualis 94013 was broad and it may be used effectively as a biocontrol agent for powdery mildew of 13 crops.

The Major Postharvest Disease of Onion and Its Control with Thymol Fumigation During Low-Temperature Storage

  • Ji, Sang Hye;Kim, Tae Kwang;Keum, Young Soo;Chun, Se-Chul
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.242-253
    • /
    • 2018
  • Onion (Allium cepa L.) is one of the major vegetable crops in Korea that are damaged and lost by pathogenic fungal infection during storage due to a lack of proper storage conditions. The aim of this study was to determine an appropriate control measure using thymol to increase the shelf life of onions. To control fungal infections that occur during low-temperature storage, it is necessary to identify the predominant fungal pathogens that appear in low-temperature storage houses. Botrytis aclada was found to be the most predominant fungal pathogen during low-temperature storage. The antifungal activity of the plant essential oil thymol was tested and compared to that of the existing sulfur treatments. B. aclada growth was significantly inhibited up to 16 weeks with spray treatments using a thymol solution. To identify an appropriate method for treating onions in a low-temperature storage house, thymol was delivered by two fumigation treatment methods, either by heating it in the granule form or as a solution at low-temperature storage conditions (in vivo). We confirmed that the disease severity was reduced up to 96% by fumigating thymol solution compared to the untreated control. The efficacy of the fumigation of thymol solution was validated by testing onions in a low-temperature storage house in Muan, Jeollanam-do. Based on these results, the present study suggests that fumigation of the thymol solution as a natural preservative and fungicide can be used as an eco-friendly substitute for existing methods to control postharvest disease in long-term storage crops on a commercial scale.

Prospect of Soybean Production, Consumption and Supply in Korea (콩 생산 수급전망과 대책)

  • Kim Seok Dong;Park Keum Yong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1998.10a
    • /
    • pp.249-265
    • /
    • 1998
  • The yearly consumption of soybean ranged from 1.5 to 1.7 million tons in Korea during 1995-1997 with an increasing trend of annual consumption by 60,000 tons. Gross consumption of soybean was 1.74 million tons in 1997: 1.292 million tons for feed, 0.433 million tons for food and its processing, and 15,000 tons for seed and other uses. Particularly, Korea totally depends upon imports of soybean for feed and oil. Only about $40{\%}$ of soybeans used for food and its processing are supplied through domestic production. Korean markets will be open to foreign agricultural products except for rice in 2004 when the Uruguay Round treaty is completed. According to the Korean Rural Economics Institutes reports, soybean consumption in 2004 is expected to be 1.87 million tons that is higher than that in 1997 by 0.13 million tons. In order to meet the need for soybean, Korean government planned to supply from 0.17 million tons of domestic production plus 1.7 million tons of imports, and also planned to raise the self-supply rate of $9.1{\%}$ in 2004 from $8.6{\%}$ in 1997. According to the USDA reports on international soybean production and consumption, its production is expected to be 150 million tons over the world and the international market prices for soybean will be unstable in 2004. Based on these reports, international soybean trade capacity will be 36 million tons in 2004 that is lower than 39 million tons (accounting for $25{\%}$ of gross production) in 1597. Also, a term-end stock in 2004 is estimated to be 9.6 million tons that is low as compared to 18.6 million tons In 1997, In coping with domestic and international soybean production, consumption and supply, and further possible food crisis, national policies and continuous efforts are necessarily required to promote domestic production and to reduce imports of soybean.

  • PDF

Insecticidal activities and repellent effects of methylcinnamate and essential oils from Alpinia galangal against nymphs and adults of Metcalfa pruinosa (양강근(Alpinia galangal Swartz) 정유와 양강근 유래 주요물질인 Methylcinnamate의 미국선녀벌레(Metcalfa pruinosa Say)에 대한 살충 및 기피 효과)

  • Park, Bueyong;Lee, Sang-Ku;Jeong, In-Hong;Park, Se-Keun;Lee, Sang-Bum
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.291-295
    • /
    • 2018
  • Metcalfa pruinosa is a pest causing widespread problems to many crops in Korea. This pest infects fruit crops especially, persimmon and grapes. We tested the possibility of M. pruinosa management using essential oils of Alpina galangal and methylcinnamate which were extracted from A. galangal by steam distillation method. The use of essential oil showed a mortality rate of 10.0 and 23.3% for adults and nymphs, respectively. While the use of methylcinnamate resulted to a mortality rate of 40.0% in adults and 36.6% in nymphs. For its repellent effect, it showed an avoidance rate of 50.0 and 63.3% for adult and nymph respectively. Considering these two results, the extract of A. galangal are shown to have some synergic effect for pest control. The result of this study showed a possibility of M. pruinosa control using essential oil and methylcinnamate from A. galangal.

Development of Selectable Marker of High Oleate Trait in Peanut (Arachis hypogaea L.) (땅콩에서 고 올레인산 형질관련 분자마커의 선발)

  • Yang, Kiwoung;Pae, Suk-Bok;Park, Chang-Hwan;Lee, Myoung Hee;Jung, Chan-Sik;Son, Jeong-Hee;Park, Keum-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.507-514
    • /
    • 2010
  • Peanut(Arachis hypogaea L.) is one of the major oilseed crops. The peanut oil consists of palmitic, oleic and linoleic acids, which are present at levels of 10%, 36-67% and 15-43%, respectively. High oleate mutant of peanut F435 contains 80% oleate and as little as 2% linoleate in seed oil. Previous study indicated that delta 12 fatty acid desaturase is a major enzyme controlling the oleate content in seeds of oilseed crops. F435 sequence alignment of their coding regions disclosed that an extra A(adenine) was inserted at the position +2,823 bp of delta 12 fatty acid desaturase gene. This study was to develop molecular marker (SNP marker) co-segregating with the high oleate trait. Chopyeong ${\times}$ F435 $F_2$ 41 population were investigated using molecular marker and fatty acid assay (NIR and gas chromatography). Finally, this marker segregates Chopyeong type 26 lines, heterotype 9 lines and F435 type 6 lines. These results in our study suggested that SNP marker conform fatty acid assay.

Characterization of Lipophilic Nutraceutical Compounds in Seeds and Leaves of Perilla frutescens

  • Um, Seungduk;Bhandari, Shiva Ram;Kim, Nam-Hoon;Yang, Tae-Jin;Lee, Ju Kyoung;Lee, Young-Sang
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.231-238
    • /
    • 2013
  • Perilla frutescens, which comprises var. frutescens and var. crispa, has been cultivated traditionally in Asian countries as an edible oil, leaf vegetable, and medicinal crop. To evaluate the lipophilic phytonutrient properties of P. frutescens, we selected 54 Perilla accessions [19 landraces of var. frutescens (FL), 22 weedy type var. frutescens (FW), 9 weedy type var. crispa (CW), 2 cultivars of var. frutescens widely cultivated for seed oil (FCS), and 2 cultivars of var. frutescens cultivated as a leaf vegetable (FCL)] and analyzed their seeds and leaves for vitamin E, squalene, and phytosterols. Among the four vitamin E isomers analyzed, ${\gamma}$-tocopherol was the major form of vitamin E in seeds, whereas ${\alpha}$-tocopherol was the major form in leaves of all types of P. frutescens. The highest total vitamin E content in seeds was present in FL ($170.0mg{\cdot}kg^{-1}$), whereas that in leaves was highest in FCL ($358.1mg{\cdot}kg^{-1}$). The highest levels of squalene in seeds and leaves were in FL ($65.5mg{\cdot}kg^{-1}$) and CW ($719.3mg{\cdot}kg^{-1}$), respectively. Among the three phytosterols, ${\beta}$-sitosterol occurred in the highest amount in both leaves and seeds of all of the crop types. Phytonutrient contents were comparatively higher in leaves than in seeds of all crop types. All of these results suggest that the consumption of leaves and seeds of Perilla crops could be beneficial to human health, as Perilla possesses considerable amounts of various lipophilic compounds.

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

  • Amini, Jahanshir;Farhang, Vahid;Javadi, Taimoor;Nazemi, Javad
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.16-24
    • /
    • 2016
  • In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration ($EC_{50}$) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest $EC_{50}$ values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean $EC_{50}$ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds ${\beta}$-geranial (${\alpha}$-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control ($p{\leq}0.05$). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

Effects of Cultivation Methods on Yield and Essential Oils of Chrysanthemum indicum L. (Gamgug)

  • Lee, Chang-Hoon;Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • Chrysanthemum indicum L. (Gamgug) has been examined to study their flowering habits, yields and bioactive compounds under different planting densities and mowing dates. The planting density experiment revealed a significantly increasing stem diameter, number of flowers and branches with decreasing plant density in the $100\;cm{\times}30\;cm$ and $130\;cm{\times}30\;cm$ treatments as compared to $70\;cm{\times}30\;cm$ treatments, but not plant height, leaf and flower width. On the other hand, the mowing date experiment showed that growth characteristics of plants were similar to the control plants (not mowing) and June 20 treatment, but July 20 treatments had significantly smaller than the control. The weights (g $plant^{-1}$) of dry flowers were affected by the planting density and mowing date. The flower yield of $586\;kg\;ha^{-1}$ obtained at $100\;cm{\times}30\;cm$ density was 11% and 22% higher than that of $120\;cm{\times}30\;cm$ and $70\;cm{\times}30\;cm$ treatments, respectively. The yield of dry flowers in the control and June 20 mowing date ranged $495-508\;kg\;ha^{-1}$, which is 40-42% higher than the yield in the July 20 treatments. The amount of essential oil (g $plant^{-1}$) in medically valuable flowerheads of C. indicum L. was statistically different between mowing dates but not among planting densities. The study showed that planting density and the mowing date could increase yields of flowerheads. An optimum planting density of $100\;cm{\times}30\;cm$ and mowing date of on or before June 20 is recommended for C. indicum L.

Insect Repellency and Crop Productivity of Essential Oil Films

  • KIM, Jin Gu;KANG, Seok Gyu;MOSTAFIZ, Md Munir;LEE, Jeong Min;LEE, Kyeong-Yeoll;HWANG, Tae Kyung;LIM, Jin Taeg;KIM, Soo Yeon;LEE, Won Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.95-106
    • /
    • 2020
  • The purpose of this study was to determine the effects of coniferous essential oils (EOs) blended films on insect repellence and crop productivity. Low-density polyethylene (LDPE) film is widely used, especially in agriculture and for food packaging. Ethylene vinyl acetate was blended with LDPE to reduce volatilization of EOs. An EO from Japanese cypress (Chamaecyparis obtusa) was incorporated into the blend film to conduct field research on antimicrobial and insect repellent properties. Among the various concentrations of EO, the highest concentration (2.5%) showed the highest efficiency in terms of pesticidal activity. The ability to inhibit microbial growth can be explained by the lipophilic properties of the EO component, and many studies have already demonstrated this. Agricultural films containing all types of EO have been tested on various crops such as chili, cucumber, Korean melon and have been able to verify their effectiveness in avoiding pests and increasing yields. From these results, it was found that it is reasonable to use a modified film such as a composite film containing an EO for agriculture. Thus, the modified film containing EO has undoubtedly shown impressive potential for reducing the use of pesticides in a variety of ways, not only for agricultural mulching film but also for food and agricultural product packaging. This product is an environmentally friendly chemical and is safe for agricultural and industrial and food packaging applications, among others. In particular, the use of agricultural films significantly reduces the use of pesticides, suggesting that farmers can increase their incomes by reducing working hours and costs, and increasing production.