DOI QR코드

DOI QR Code

Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species

  • Amini, Jahanshir (Department of Plant Protection, Agriculture Faculty, University of Kurdistan) ;
  • Farhang, Vahid (Department of Plant Protection, Agriculture Faculty, University of Kurdistan) ;
  • Javadi, Taimoor (Department of Horticulture, Agriculture Faculty, University of Kurdistan) ;
  • Nazemi, Javad (Department of Plant Protection, Agriculture Faculty, University of Kurdistan)
  • Received : 2015.05.27
  • Accepted : 2015.09.23
  • Published : 2016.02.01

Abstract

In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration ($EC_{50}$) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest $EC_{50}$ values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean $EC_{50}$ values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds ${\beta}$-geranial (${\alpha}$-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control ($p{\leq}0.05$). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases.

Keywords

References

  1. Amini, M., Safaie, N., Salmani, M. J. and Shams-Bakhsh, M. 2012. Antifungal activity of three medicinal plant essential oils against some Phytopathogenic fungi. Trakia J. Sci. 10: 1-8.
  2. Behtoei, H., Amini, J., Javadi, T. and Sadeghi, A. 2012. Composition and in vitro antifungal activity of Bunium persicum, Carum copticum and Cinnamomum zeylanicum essential oils. J. Med. Plant Res. 6:5069-5076. https://doi.org/10.5897/JMPR12.106
  3. Bi, Y., Jiang, H., Hausbeck, M. K. and Hao, J. J. 2012. Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant Dis. 96:797-803. https://doi.org/10.1094/PDIS-11-11-0933
  4. Bowers, J. H. and Locke, J. C. 1999. Effect of botanical extract on population of Phytophthora nicotianae and disease control in the greenhouse. Phytopathology 89:S8.
  5. Bowers, J. H. and Locke, J. C. 2004. Effect of formulated plant extracts and oils on population density of Phytophthora nicotianae in soil and control of Phytophthora blight in the greenhouse. Plant Dis. 88:11-16. https://doi.org/10.1094/PDIS.2004.88.1.11
  6. Carvalho, J. B., Schwan-Estrada, K. R. F., Bonaldo, S. M., Cruz, M. E. S., Carlos, M. M. and Stangarlin, J. R. 2008. Fungitoxidade de Cymbopogon citratus e Cymbopogon martini a Colletotrichum gloeosporioides em frutos de pimentao. Br. J. Med. Plants. 10:88-93.
  7. De Curtis, F., Lima, G., Vitullo, D. and De Cicco, V. 2010. Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot. 29:663-570. https://doi.org/10.1016/j.cropro.2010.01.012
  8. Del Rio, J. A., Arcas, M. C., Benavente-Garlic, O. and Ortuno, A. 1998. Citrus polymethoxylate flavones can confer resistance against Phytophthora citrophthora, Penicillium digitatum, and Geotrichum species. J. Agric. Food Chem. 46:4423- 4428. https://doi.org/10.1021/jf980229m
  9. Dev, N., Das, A. K., Hossani, M. A. and Rahman, M. M. 2011. Chemical composition of different extracts of Ocimum basilicum leaves. J. Sci. Res. 3:197-206.
  10. Dikbas, N., Kotan, R., Dadasoglu, F. and Sahin, F. 2008. Control of Aspergillus flavus with essential oil and methanol extract of Sartureja hortensis. Int. J. Food Microbiol. 124:179-182. https://doi.org/10.1016/j.ijfoodmicro.2008.03.034
  11. Duke, J. A. 1985. CRC Handbook of Medicinal Herbs. CRC Press, Boca Raton, Florida. 677 pp.
  12. Ershad, J. 1992. Phytophthora species in Iran (Isolation, Purification, Identification). 1992. Agricultural Research Organization. 217 pp.
  13. Etebarian, H. R. 2012. Diseases of Vegetable and Cucurbit and Their Control. University of Tehran. 600 pp.
  14. Garcia, M., Donadel, O. J., Ardanaz, C. E., Tonn, C. E. and Sosa, M. E. 2005. Toxic and repellent effect of Baccharis salicifolia essential oil on Triboliun castaneun. Pest Manage. Sci. 61: 612-618. https://doi.org/10.1002/ps.1028
  15. Gupta, A., Sharma, S. and Naik, S. N. 2011. Biopesticidal value of selected essential oils against pathogenic fungus, termites, and nematodes. Int. Biodeter. Biodegr. 65:703-707. https://doi.org/10.1016/j.ibiod.2010.11.018
  16. Hausbek, M. K. and Lamour, K. H. 2004. Phytophthpora capsici on vegetable crops: research progress and management challenges. Plant Dis. 88:1292-1303. https://doi.org/10.1094/PDIS.2004.88.12.1292
  17. Helal, G. A., Sarhan, M. M., Abu Shahla, A. N. K. and Abou Elkhair, E. K. 2006. Antimicrobial activity of some essential oils against microorganism deteriorating fruit juices. Mycobiology 34:219-229. https://doi.org/10.4489/MYCO.2006.34.4.219
  18. Jee, H. J., Nam, K. W. and Cho, E. D. 2001. Severe root rot on hydroponically-grown lettuce caused by Phytophthora drechsleri. Plant Pathol. J. 17: 311-314.
  19. Kumar, A., Shukla, R., Singh, P. and Dubey, N. K. 2010. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 48:539-543. https://doi.org/10.1016/j.fct.2009.11.028
  20. Lamour, K. H., Daughtrey, M. L., Benson, D. M., Hwang, J. and Hausbeck, M. K. 2003. Etiology of Phytophthora drechsleri and P. nicotianae (= P. parasitica) diseases affecting floriculture crop. Plant Dis. 87:854-858. https://doi.org/10.1094/PDIS.2003.87.7.854
  21. Lee, Y. S., Kim, J., Shin, S. C. and Lee, S. G. 2008. Antifungal activity of Myrtacea essential oils and their components against three Phytopathogenic fungi. Flavour Frag. J. 23:23- 28. https://doi.org/10.1002/ffj.1850
  22. Mahanta, J. J., Chutia, M., Bordoloi, M., Pathak, M. G., Adhikary, R. K. and Sarma, T. C. 2007. Cymbopogon citratus L. essential oil as a potential antifungal agent against key weed moulds of Pleurotus spp. spawns. Flavour Frag. J. 22:525- 530. https://doi.org/10.1002/ffj.1835
  23. Mollaei, M., Izadi, H., Dashti, H., Majidi, A. and Ranjbar, K. R. 2011. Bioactivity of essential oil from Satureja hortensis (Laminaceae) against three stored-product insect species. Afr. J. Biotechnol. 10:6620-6627.
  24. On, A., Wong, F., Ko, Q., Tweddell, R. T., Antoun, H. and Avis, T. J. 2015. Antifungal effect of compost tea microorganism on tomato pathogens. Biol. Control 80:63-69. https://doi.org/10.1016/j.biocontrol.2014.09.017
  25. Ozcan, M. M., Chalchat, J. C., Arslan, D., Ates, A. and Unever, A. 2006. Comparative essential oil composition and antifungal effect of bitter fennel (Foenichlum vulgare ssp. Piperitum) fruit oils obtained during different vegetation. J. Med. Food. 9: 552-561. https://doi.org/10.1089/jmf.2006.9.552
  26. Paret, M. L., Cabos, R., Kratky, B. A. and Alvarez, A. M. 2010. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis. 94:521-527. https://doi.org/10.1094/PDIS-94-5-0521
  27. Para, G. and Ristaino, J. B. 2001. Resistance to mefanoxam and Metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis. 85:1069- 1075. https://doi.org/10.1094/PDIS.2001.85.10.1069
  28. Pinto, J. M. A., Souza, E. A. and Oliveira, D. F. 2010. Use of Plant extract in the control of common bean anthracnose. Crop Prot. 29:838-842. https://doi.org/10.1016/j.cropro.2010.03.006
  29. Prakash, B., Shukla, R., Singh, P., Mishra, P. K., Dubey, N. K. and Kharwar, R. N. 2011. Efficacy of chemically characterized Ocimum gratissimum L. essential oil as an antioxidant and a safe plant based antimicrobial against fungal and aflatoxin B1 contamination of spices. Food Res. Int. 44:385-390. https://doi.org/10.1016/j.foodres.2010.10.002
  30. Rahimi-Nasrabadi, M., Nazarian, S. H., Farahani, H., Fallah- Koohbijari, G. R., Ahmadi, F. and Batooli, H. 2013. Chemical composition, antioxidant, and antibacterial activities of the essential oil methanol extracts of Eucalyptus largiflorens. Int. J. Food Proper. 16:369-381. https://doi.org/10.1080/10942912.2010.551310
  31. Reddy, M. V., Angers, P. and Gosselin, A. 1998. Characterization and use of essential oil from Thymus vvulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry 47:1515-1520. https://doi.org/10.1016/S0031-9422(97)00795-4
  32. Shadab, O., Hanif, M. and Chaudhary, F. M. 1992. Antifungal activity by lemongrass essential oils. Pak. J. Sci. Int. Res. 35:246-249.
  33. Shouan Z., Thomas, L. W., Miriam, C. M., John A., Joseph, W. K. and Waldemar, K. 2010. Evaluation of plant growthpromoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biol. Cont. 53:129-135. https://doi.org/10.1016/j.biocontrol.2009.10.015
  34. Somada, I., Leth, V. and Sereme, P. 2007. Antifungal effect of Cymbopogon citratus, Eucalyptus camaldulensis and Azadirachta indica oil extracts on sorghum seed-borne fungi. Asian J. Plant Sci. 6:1182-1189. https://doi.org/10.3923/ajps.2007.1182.1189
  35. Someya, N., Kataoka, N., Hirayae, K., Hibi, T. and Akutsu, K. 2000. Biological control of cyclamen soil borne diseases by Serratia marcescens strain B2. Plant Dis. 84:334-340. https://doi.org/10.1094/PDIS.2000.84.3.334
  36. Stamps, D. J., Waterhouse, G. M., Newhook, F. J. and Hall, G. S. 1990. Revised tabular key to the species of Phytophthora. Mycol. Pap. 162:28 pp.
  37. Stangarlin, J. R., Kuhn, O. J. and Schwan-Estrada, K. R. F. 2008. Control de doencas de plantas por extratos de origem vegetal. Revis. Anu. Patol. Plantas. 16:265-304.
  38. Sulaiman Ali Al Yousef. 2013. Antifungal activity of volatiles from Lemongrass (Cymbopogon citratus) and Peppermint (Mentha piperita) oils against some respiratory pathogenic species of Aspergillus. Int. J. Curr. Microbiol. App. Sci. 2: 261-272.
  39. Tabarraei, M., Amini, J. and Harighi, B. 2011. Effect of fluorescent Pseudomonads for control of damping-off disease of cantaloupe caused by Phytophthora drechsleri. Aust. J. Crop. Sci. 5:1427-1433.

Cited by

  1. α, β-citral from Cymbopogon citratus on cellulosic film: Release potential and quality of coalho cheese vol.85, 2017, https://doi.org/10.1016/j.lwt.2017.07.029
  2. Studies on the Behavior of Eucalyptol and Terpinen-4-ol—Natural Food Additives and Ecological Pesticides—in Model Lipid Membranes vol.33, pp.27, 2017, https://doi.org/10.1021/acs.langmuir.7b00774
  3. A complex game of hide and seek: the search for new antifungals vol.7, pp.7, 2016, https://doi.org/10.1039/C6MD00222F
  4. Evaluation of Stability and In Vitro Security of Nanoemulsions Containing Eucalyptus globulus Oil vol.2017, 2017, https://doi.org/10.1155/2017/2723418
  5. Biological control of growth promoting rhizobacteria against verticillium wilt of pepper plant pp.1336-9563, 2018, https://doi.org/10.2478/s11756-018-00169-9
  6. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom vol.67, pp.4, 2018, https://doi.org/10.1111/lam.13053
  7. Exploration of essential oils as alternatives to conventional fungicides in lupin cultivation pp.1879-4246, 2019, https://doi.org/10.1007/s13165-018-0212-3