• 제목/요약/키워드: oil yield

검색결과 762건 처리시간 0.023초

Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives

  • Ghimire, Gopal Prasad;Nguyen, Huy Thuan;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.441-451
    • /
    • 2016
  • Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented.

Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media

  • Vanavil, B.;Perumalsamy, M.;Rao, A. Seshagiri
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1229-1243
    • /
    • 2013
  • In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at $37^{\circ}C$ and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.

Effect of Precultural and Nutritional Parameters on Compactin Production by Solid-State Fermentation

  • Nikhil S., Shaligram;Singh, Sudheer Kumar;Singhal, Rekha S.;Szakacs, George;Pandey, Ashok
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.690-697
    • /
    • 2009
  • In the present study, production of compactin by Penicillium brevicompactum WA 2315 was studied. In the first step, various precultural parameters were studied by substituting one factor at a time. Subsequently, the effect of maltodextrin DE 18 on compactin production was studied. The optimized parameters gave maximum compactin production of 850 ${\mu}g/gds$as compared with 678 ${\mu}g/gds$before optimization. Statistical study was performed to further improve the production and develop a robust model. An improved yield of 950 ${\mu}g/gds$was obtained using the conditions proposed by the experimental model. The present study emphasizes the importauce of precultural and nutritional parameters on the production of compactin, and further confirms the usefulness of solid-state fermentation for the production of industrially important secondary metabolites. It also confirms that complex nitrogen sources such as oil cakes can be used for the production of compactin.

붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가 (Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging)

  • 박현균;김남규;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

생활폐기물 고형연료(RDF) 제조기술 경제성 평가 (An Economic Evaluation of MSW RDF Production Plant)

  • 최연석;최항석;김석준
    • 신재생에너지
    • /
    • 제7권1호
    • /
    • pp.29-35
    • /
    • 2011
  • The waste treatment fee and energy production effect of Wonju city RDF plant, the first RDF manufacturing plant in Korea, were investigated in the study. All plant operation data, like total weight of received wastes, produced RDF and separated rejects in processes were fully recorded for mass balance calculation of the plant in 2009. Also all consumed oil and electricity were recorded for energy balance calculation. The results showed that the waste treatment fee not including the RDF sales price of 25,000 won/ton-RDF was 116,573 won/ton-MSW and it went down to 105,298 won when included the RDF price. Produced RDF was 40.2% of total received waste in weight. Three components analysis by mass balance calculation of total received waste showed that Wonju city's MSW was 32.4% of combustible, 37.5% of water and 30.1% of incombustible respectively. Energy effect was found that total amount of produced energy was about 4 times more than that of consumed energy.

추진축계 비틀림 진동 감쇠를 위한 점성 댐퍼의 최적 설계 (Optimum Design of Viscous Fluid Damper for Reducing the Torsional Vibration of Propulsion Shaft System)

  • 박상윤;한국현;박주민;권성훈;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제25권9호
    • /
    • pp.606-613
    • /
    • 2015
  • In this study, the torsional vibration analysis for a marine propulsion system is carried out by using the transfer matrix method(TMM). The torsional moment produced by gas pressure and reciprocating inertia force may yield severe torsional vibration problem in the shaft system which results in a damage of engine system. There are several ways to control the torsional vibration problem at hand, firstly natural frequencies can be changed by adjusting shaft dimensions and/or inertia quantities, secondly firing order and crank arrangement are modified to reduce excitation force, and finally lower the vibration energy by adopting torsional vibration damper. In this paper, the viscous torsional vibration damper is used for reducing the torsional vibration stresses of shaft system and it is conformed that optimum model of the viscous damper can be determined by selecting the geometric design parameters of damper and silicon oil viscosity.

Purification and Properties of HPS (Halitosis Prevention Substance) Isolated from Cumin (Cuminum cyminum L.) Seed

  • Kang, Eun-Ju;Ryu, Il-Hwan;Lee, Kap-Sang
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.621-627
    • /
    • 2005
  • Halitosis is mainly caused by the presence of volatile sulfur-containing compounds (VSC's) produced by proteolytic periodontopathic bacteria in the oral cavity. Various mouth-rinses have been offered on the market as solutions to reduce halitosis. The aim of this study was to find a potent substance for the prevention of halitosis. The halitosis prevention substance (HPS) from cumin seed powder was purified by solvent extraction, silica gel column chromatography and preparative TLC to yield an oil phase (0.98%). Instrumental analysis such as FT-IR, $^1H$-NMR and $^{13}C$-NMR showed that HPS contained an -OH group, -HC=CH-, -COO-, and long chain acyl group. HPS was therefore determined to be 2-hydroxyethyl-${\beta}$-undecenate. HPS inhibited the growth of Fusobacterium nucleatum and Porphyromonas gingivalis, by 72.44% and 64.37% at $1{\times}10^{-2}\;M$, and by 99.85% and 91.62% at $5\;{\times}\;10^{-2}\;M$, respectively. It also inhibited the activity of L-methionine-${\alpha}$-deamino-${\gamma}$-mercaptomethane-lyase (METase), which was produced by oral microbes. Furthermore, the VSC production by oral microbes in the human mouth air decreased with increasing HPS concentration. These results suggested that HPS from cumin seed is an efficient halitosis prevention agent.

Response Surface Method를 이용한 폐식용유로부터 바이오디젤 생산의 최적화 (Optimization of Biodiesel Production from Waste Frying Oil using Response Surface Method)

  • 이세진;김의용
    • KSBB Journal
    • /
    • 제17권4호
    • /
    • pp.396-402
    • /
    • 2002
  • 바이오디젤(지방산 메틸 에스테르)은 생분해성, 무독성, 그리고 재생연료로서 지난 10여년간 많은 관심을 끌고 있다. 바이오디젤을 생산하기 위해 다양한 방법들이 개발되었는데, 그 중 알칼리 촉매를 이용한 에스테르화 반응이 짧은 시간동안 높은 수율을 얻을 수 있다. 따라서 본 연구에서는 알칼리 촉매하에 에스테르화 반응의 최적조건을 찾기 위하여 response surface method를 사용하였다. 결과적으로 바이오디젤 생산 공정에 영향을 주는 7개의 변수 중 반응온도, 반응시간, 그리고 교반속도가 중요했는데 이들의 최적 값은 각각 67$^{\circ}C$, 68분, 94 rpm이었다. 이와같은 최적인 조건하에서 실험한 결과 바이오디젤로의 전화율은 99.7%이었다.

해저송유관의 열팽창 고찰 (Study on Sebsea Pipeline Thermal Expansion)

  • 조철희;홍성근
    • 한국해안해양공학회지
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 1999
  • 해안 및 해양에 설치되어 있는 해저관로는 원유, 가스, 물과 이들의 혼합된 유체들을 전달하기 위한 수단으로 사용되고 있다. 관로 내부 유체의 열과 압력 차이는 해저관로의 팽찰을 야기시킨다. 해전관로 팽창은 관로와 연결되는 구조물들에 응력을 유발시킨다. 작용 응력이 연결 부재의 항복점을 초과하거나 전체 시스템의 허용변형을 초과할 경우 구조물에 손상이 발생된다. 해안 및 해양에 설치되는 해저관로는 주로 위험 물질이나 유독 유체를 포함하기 때문에 만약 이런 유체의 유출이 발생될 경우 인명 피해는 물론 큰 경제적 손실을 가져온다. 비록 해저관로는 시간적/공간적 제약 없이 유체를 전달할 수 있지만, 이런 관로 설계시 안전하게 그 기능을 수행할 수 있도록 고려되어야 한다. 본 논문에서는 해저관로의 열변형 해석에 사용되는 여러 개의 이론을 조사하였고, 관로의 요소들이 관로 팽창에 미치는 영향에 대해 조사하였다.

  • PDF

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.