• Title/Summary/Keyword: oil and derivatives

Search Result 97, Processing Time 0.05 seconds

Performance Comparison of Reinforcement Learning Algorithms for Futures Scalping (해외선물 스캘핑을 위한 강화학습 알고리즘의 성능비교)

  • Jung, Deuk-Kyo;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.697-703
    • /
    • 2022
  • Due to the recent economic downturn caused by Covid-19 and the unstable international situation, many investors are choosing the derivatives market as a means of investment. However, the derivatives market has a greater risk than the stock market, and research on the market of market participants is insufficient. Recently, with the development of artificial intelligence, machine learning has been widely used in the derivatives market. In this paper, reinforcement learning, one of the machine learning techniques, is applied to analyze the scalping technique that trades futures in minutes. The data set consists of 21 attributes using the closing price, moving average line, and Bollinger band indicators of 1 minute and 3 minute data for 6 months by selecting 4 products among futures products traded at trading firm. In the experiment, DNN artificial neural network model and three reinforcement learning algorithms, namely, DQN (Deep Q-Network), A2C (Advantage Actor Critic), and A3C (Asynchronous A2C) were used, and they were trained and verified through learning data set and test data set. For scalping, the agent chooses one of the actions of buying and selling, and the ratio of the portfolio value according to the action result is rewarded. Experiment results show that the energy sector products such as Heating Oil and Crude Oil yield relatively high cumulative returns compared to the index sector products such as Mini Russell 2000 and Hang Seng Index.

Estimation of Crude Oil Price Dynamics and Option Valuation (원유가격의 동태성 추정과 옵션가치 산정)

  • Yun, Won-Cheol;Park, Hojeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.4
    • /
    • pp.943-964
    • /
    • 2005
  • This study estimated a wide range of stochastic process models using the frameworks of CKLS (1992) and Nowman and Wang (2001). For empirical analysis, the GMM estimation procedure is adopted for the monthly Brent crude oil prices from January 1996 to January 2005. Using the simulated price series, European call option premiums were calculated and compared each other. The empirical results suggest that the crude oil price has a strong dependency of volatility on the price level. Contrary to the results of previous related studies, it shows a weak tendency of mean reversion. In addition, the models provide different implications for pricing derivatives on crude oil.

  • PDF

Antiinflammatory Activity of Flavonoids:Mouse Ear Edema Inhibition

  • Kim, Hee-Kee;Namgoong, Soon-Young;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 1993
  • In this inverstigation, the various flavonoid aglycones were evaluated for their inhibitory activities against croton-oil or arachidonic acid induced mouse ear edema by oral or topical administration. The compounds tested were thirteen derivatives of flavan-3-ol(catechin and epicatechin), flavanone (flavanone and naringenin), flavone (flavone, chrysin and apigenin), flavonol(favonol, galangin, quercetin and morin) and isoflavone (biochanin A and 2-carbethoxy-5,7-dihydroxy-4'-methoxyisoflavone), along with hydrocortisone, indomethacin, 4-bormophenacyl bromide, nordihydroguaiaretic acid and phenidone as positive controls. A(isoflavone) were found to show broad inhibitoty activities (14-52%) against croton-oil or arachidonic acid induced ear edema by oral or topical application at the dose of 2 mg/mouse, although they showed less activity than hydrocortisone (26-88%) or indomethacin (36-80%). Flavonoid agtlycones tested showed higher activity when aplied topically than by the oral administration. It was also found that they inhibited arachidonic acid induced edema more profoundly than croton-oil induced edema by topical application. In arachidonic acid induced edema when applied topically, flavone derivatives such as flavone, chrysin and apigenin were revealed to be the good inhibitory agents in addition to flavonols and isoflavones. When quercetin and biochanin. A were selected for evaluating in carrageenan induced rat pleurisy and biochanin both flavonoids showed antiinflammatory activity at the dose of 70 mg/kg by the oral adminis-tration. All of these results revealed that flavonoid aglycones, especially 5,7-dihydroxy-flavonols having hydroxyl group(s) in B-ring and biochanin A (isoflavone) possessed in vivo antiinflammatory activity.

  • PDF

Bioremediation Potential of a Tropical Soil Contaminated with a Mixture of Crude Oil and Production Water

  • Alvarez, Vanessa Marques;Santos, Silvia Cristina Cunha dos;Casella, Renata da Costa;Vitae, RonaIt Leite;Sebastin, Gina Vazquez;Seldin, Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1966-1974
    • /
    • 2008
  • A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

Review on the chemicals used for hydraulic fracturing during shale gas recovery (쉐일가스 생산을 위한 수압파쇄에 사용되는 화학물질)

  • Kang, Byoung-Un;Oh, Kyeong-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.517-524
    • /
    • 2014
  • Two key technologies of horizontal drilling and hydraulic fracturing are recognized to achieve the rapid growth of shale gas production, in specific, in the United States during last decade. The claims between environmentalists and oil companies have been debating in terms of water contamination. Nowadays, voluntary publication of chemicals from shale gas players are available in the website, FracFocus. This paper introduces chemicals that are currently used in hydraulic fracturing process. Among chemicals, guar gum and guar derivatives are dominantly consumed to increase the viscosity of hydrofracking fluids. The role of additional additives, such as breakers and biocides, is presented by explaining how they cut down the molecular structure of guar gum and guar derivatives. In addition, crosslinking agent, pH controller, friction reducer, and water soluble polymers are also presented.

Electrical and Rheological Behavior of the Angydrous ER Fluids Based on Chitosan Derviatives as the Dispersion Phases

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.5 no.2
    • /
    • pp.49-51
    • /
    • 2004
  • The electrical and rheological properties pertaining to the electrorheological (ER) behavior of chitosan derivatives, chitosan, chitosan ammonium salt and chitosan phosphated suspensions in silicone oil were investigated. Chitosan derivative suspensions showed a typical ER response (Bingham flow behavior) upon application of an electric field. However, chitosan phosphate suspension exhibited an excellent shear yield stress compared with chitosan and chitosan ammonium salt suspensions. The difference in behavior results from the difference in the conductivity of the disperse phases due to the difference of their polarizability. The shear stress for the chitosan, chitosan ammonium salt and chitosan phosphate suspensions exhibited a linear dependence on the volume fraction of particles and 1.18, 1.41 and 1.67 powers of the electric field. On athe basis of the experimental results, the newly synthesized chitosan dervative suspensions found to be an ER fluid.

Experimental Study on Manoeuvring Hydrodynamic Derivatives and Interaction Coefficients of Full Form Ship (비대선형의 조종 유체력 미계수 및 간섭 계수에 관한 실험적 연구)

  • 최명식;윤점동;이경우
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.49-57
    • /
    • 1994
  • In marine transportation of bulk cargoes such as crude oil. ore, coal etc., a lot of full form ship which have poor manoeuvrability were presented in many countries. Since ship manoeuvrability depends upon many parameters namely hydrodynamic derivatives, interference factors etc., as external forces, it is of great importance that we investigate these values of parameters on analysis of manoeuvrability. In this paper, we investigated and analyzed interaction coefficients among hull-propeller-rudder for a full form ship by captive model test in circulating water channel, and then compared with experimental results by PMM test. A tanker model ship which has 0.83 as block coefficient and MMG mathematical models were used in this experiment. Almost same tendencies were found in qualitative analysis, even though more serial experiments were demanded in quantitative analysis.

  • PDF

Biodiesel: Oil-crops and Biotechnology (바이오디젤 원료 작물 품종 개량과 생명공학기술 응용)

  • Roh, Kyung-Hee;Park, Jong-Sug
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.137-146
    • /
    • 2007
  • The substitution of fossil fuels with biofuels has been proposed by the European Union (EU) as part of a strategy to mitigate greenhouse gas emissions from road transport, increase security of energy supply and support the development of rural communities. Vegetable oils and their derivatives (especially methyl esters), commonly referred to as 'biodiesel', are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to the initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. However, several problems remain including economics, combustions, some emissions, lube oil contamination, and low-temperature properties. Therefore, quality control of fuel-related properties of biodiesel is needed to obtain consistent engine performance by fuel users. The quality of the fuel is affected by the oil composition. Rapeseed oil has been targeted for fuel use because it produces an oil with a close-to-optimum set of fuel characteristics. In this paper we have reviewed past and current efforts, both by traditional seed-breeding methods and by genetic engineering, to modify rapeseed oil quality and yield.

Optimization of Soybean Oil Fatty Acid Methyl Esters Preparation for Sucrose Polyesters Synthesis (Sucrose polyesters 합성에 사용하는 대두유 지방산 메틸에스테르 제조의 최적화)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.240-246
    • /
    • 1992
  • Preparation of soybean oil fatty acid methyl esters (soybean oil FAME) through the transesterification of soybean oil with alkaline catalyst was optimized in terms of contents of residual free fatty acids (FFA) in soybean oil FAME and yield of soybean oil FAME due to the inhibitory effect of FFA on sucrose polyesters synthesis. Soybean oil FAME and residual FFA were analyzed quantitatively by simultaneous gas chromatography on a fused silica capillary column after converting the FFA in soybean oil FAME to tert.-butyldimethylsilyl (TBDMS) derivatives. Transesterification of soybean oil was successfully performed with alkaline catalyst (NaOH, 95%), which resulted in 99.1% yield of soybean oil FAME and less than 0.1% residual FFA contents under the conditions such as $30^{\circ}C$, 20min. and 6:1 molar ratio of anhydrous methanol to soybean oil.

  • PDF