Browse > Article
http://dx.doi.org/10.4014/jmb.0800.279

Bioremediation Potential of a Tropical Soil Contaminated with a Mixture of Crude Oil and Production Water  

Alvarez, Vanessa Marques (Laboratorio de Gemitica Microbiana, lnstituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro)
Santos, Silvia Cristina Cunha dos (Laboratorio de Gemitica Microbiana, lnstituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro)
Casella, Renata da Costa (Fundacao Gorceix)
Vitae, RonaIt Leite (CENPES-PETROBRAS)
Sebastin, Gina Vazquez (CENPES-PETROBRAS)
Seldin, Lucy (Laboratorio de Gemitica Microbiana, lnstituto de Microbiologia Prof. Paulo de Goes, Universidade Federal do Rio de Janeiro)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.12, 2008 , pp. 1966-1974 More about this Journal
Abstract
A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.
Keywords
Bacterial communities; bioremediation; oil; PCR-DGGE; production water;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aislabie, J., M. McLeod, and R. Fraser. 1998. Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antartica. Appl. Microbiol. Biotechnol. 49: 210-214   DOI   ScienceOn
2 Bundy, J. G., G. I. Paton, and C. D. Campbell. 2002. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92: 276-288   DOI   ScienceOn
3 Cheung, P. Y. and B. K. Kinkle. 2001. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67: 2222-2229   DOI   ScienceOn
4 EPA 8015C. 2000. Nonhalogenated Organics Using GC/FID. EPA, Revision 3
5 Juck, D., T. Charles, L. Whyte, and C. Greer. 2000. Polyphasic microbial community analysis of petroleum hydrocarboncontaminated soils from two northern Canadian communities. FEMS Microbiol. Ecol. 33: 241-249   DOI   ScienceOn
6 Kasai, Y., Y. Takahata, T. Hoaki, and K. Watanabe. 2005. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ. Microbiol. 7: 806-818   DOI   ScienceOn
7 Kushner, D. J. 1978. Life in high salt and solute concentrations: Halophilic bacteria, pp. 317-368. In D. J. Kushner, (ed.). Microbial Life in Extreme Environments. Academic Press, London, U.K
8 Nicholson, C. A. and B. F. Fathepure. 2004. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl. Environ. Microbiol. 70: 1222-1225   DOI   ScienceOn
9 Supaphol, S., S. Panichsakpatana, S. Trakulnaleamsai, N. Tungkananuruk, P. Roughjanajirapa, and A. G. O'Donnell. 2006. The selection of mixed microbial inocula in environmental biotechnology: Example using petroleum contaminated tropical soils. J. Microbiol. Methods 65: 432-441   DOI   ScienceOn
10 Vanderberg, L. A., R. Krieger-Grumbine, and M. N. Taylor. 2000. Evidence for diverse oxidations in the catabolism of toluene by Rhodococcus rhodochrous strain OFS. Appl. Microbiol. Biotechnol. 53: 447-452   DOI   ScienceOn
11 Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092   DOI   ScienceOn
12 MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
13 Nübel, U., B. Engelen, A. Felske, J. Snaidr, A. Wieshuber, R. I. Amann, W. Ludwig, and H. Backhaus. 1996. Sequence heterogeneities of genes encoding 16S rDNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 178: 5636-5643   DOI
14 Hawle-Ambrosch, E., W. Riepe, M. Dornmayr-Pfaffenhuemer, C. Radax, A. Holzinger, and H. Stan-Lotter. 2007. Biodegradation of fuel oil hydrocarbons by a mixed bacterial consortium in sandy and loamy soils. Biotechnol. J. 2: 1564-1568   DOI   ScienceOn
15 Seldin, L. and D. Dubnau. 1985. DNA homology among Bacillus polymyxa, Bacillus azotofixans and other nitrogen fixing Bacillus strains. Int. J. Syst. Bacteriol. 35: 151-154   DOI
16 Röling, W. F., M. G. Milner, D. M. Jones, F. Fratepietro, R. P. Swannell, and F. Daniel. 2004. Bacterial community dynamics and hydrocarbon degradation during a field scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70: 2603-2613   DOI   ScienceOn
17 Smits, T. H. M., M. Rothlisberger, B. Witholt, and J. B. van Beilen. 1999. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ. Microbiol. 1: 307-318   DOI   ScienceOn
18 Bouchez-Naïtali, M., D. Blanchet, V. Bardin, and J. P. Vandecasteele. 2001. Evidence for interfacial uptake in hexadecane degradation by Rhodococcus equi: The importance of cell flocculation. Microbiology 147: 2537-2543   DOI
19 von der Weid, I., J. M. Marques, C. D. Cunha, R. K. Lippi, S. C. C. Santos, A. S. Rosado, U. Lins, and L. Seldin. 2007. Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst. Appl. Microbiol. 30: 331-339   DOI   ScienceOn
20 Arenskötter, M., D. Bröker, and A. Steinbüchel. 2004. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 70: 3195-3204   DOI   ScienceOn
21 Torsvik, V., L. Ovreas, and T. F. Thingstad. 2002. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296: 1064-1066   DOI   ScienceOn
22 Ashok, B. T., S. Saxena, and J. Mussarat. 1995. Isolation and characterization of four polycyclic aromatic hydrocarbon degrading bacteria from soil near an oil refinery. Lett. Appl. Microbiol. 21: 246-248   DOI   ScienceOn
23 Röling, W. F. M., I. M. Head, and S. R. Later. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: Perspectives and prospects. Res. Microbiol. 154: 321-328   DOI   ScienceOn
24 Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol. 12: 237-241   DOI   ScienceOn
25 Bento, F. M., F. A. O. Camargo, B. C. Okeke, and W. T. Frankenberger. 2005. Comparative bioremediation of soils contaminated by natural attenuation, biostimulation and bioaugmentation. Bioresour. Technol. 96: 1049-1055   DOI   ScienceOn
26 Cunha, C. D., A. S. Rosado, G. V. Sebastián, L. Seldin, and I. von der Weid. 2006. Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil. Appl. Microbiol. Biotechnol. 73: 949-959   DOI   ScienceOn
27 Medina-Bellver, J. I., P. Marín, A. Delgado, A. Rodríguez- Sanches, E. Reyes, J. L. Ramos, and S. Marqués. 2005. Evidence for in situ crude oil biodegradation after the Prestige oil spill. Environ. Microbiol. 7: 773-779   DOI   ScienceOn
28 Toledo, F. L., C. Calvo, B. Rodelas, and J. González-López. 2006. Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst. Appl. Microbiol. 29: 244-252   DOI   ScienceOn
29 Chen, H. H., W. J. Li, S. K. Tang, R. M. Kroppenstedt, E. Stackebrandt, L. H. Xu, and C. L. Jiang. 2004. Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int. J. Syst. Evol. Microbiol. 54: 779-782   DOI   ScienceOn
30 Margesin, R. and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56: 650-653   DOI   ScienceOn
31 Gelsomino, A., C. Keijzer-Wolters, G. Cacco, and J. D. van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J. Microbiol. Methods 38: 1-15   DOI
32 Philp, J. C., S. M. Bamforth, I. Singleton, and R. M. Atlas. 2005. Environmental pollution and restoration: A role for bioremediation, pp. 1-48. In R. M. Atlas, and J. Philp (eds.). Bioremediation. ASM Press, Washington, DC
33 EMBRAPA. 1979. Servico Nacional de Levantamento e Conservação de Solos. Manual de métodos de análise de solo. Rio de Janeiro, RJ
34 Lu, S. J., H. Q. Wang, and Z. H. Yao. 2006. Isolation and characterization of gasoline-degrading bacteria from gas station leaking-contaminated soils. J. Environ. Sci. 18: 969-972   DOI   ScienceOn
35 Oren, A., P. Gurevich, M. Azachi, and Y. Henis. 1992. Microbial degradation of pollutants at high salt concentrations. Biodegradation 3: 387-398   DOI   ScienceOn
36 Duarte, G. F., A. S. Rosado, L. Seldin, W. Araújo, and J. D. van Elsas. 2001. Analysis of bacterial community structure in sulfurous-oil containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl. Environ. Microbiol. 67: 1052-1062   DOI   ScienceOn
37 Heiss-Blanquet, S., Y. Benoit, C. Maréchaux, and F. Monot, 2005. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J. Appl. Microbiol. 99: 1392-1403   DOI   ScienceOn
38 Evans, F. F., A. S. Rosado, R. Casella, G. V. Sebastián, P. L. O. A. Machado, C. Holmström, S. Kjelleberg, J. D. van Elsas, and L. Seldin. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305   DOI   ScienceOn
39 Zhang, H., A. Kallimanis, A. I Koukkou, and C. Drainas. 2004. Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl. Microbiol. Biotechnol. 65: 124-131
40 Chaineau, C. H., J. F. Vidalie, P. Geneste, J. Ducreux, and D. Ballerini. 2000. Bioremediation of a crude oil-polluted clay soil in a temperature zone, pp. 1-12. In: Proceedings of the SPE International Conference on Health, Safety, and the Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, Houston, Texas
41 Tian, L., P. Ma, and J. J. Zhong. 2002. Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochem. 37: 1431-1437   DOI
42 Massol-Deya, A. A., D. A. Odelson, R. P. Hichey, and J. M. Tiedje. 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA), pp. 1-8. In A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn (eds.), Molecular Microbial Ecology Manual. Section 3.3.2. Kluwer Academic Publishers, The Netherlands
43 Przybulewska, K., A. Wieczorek, A. Nowak, and M. Pochrzaszcz. 2006. The isolation of microorganisms capable of phenol degradation. Pol. J. Microbiol. 55: 63-67
44 Waight, K., O. Pinyakong, and E. Luepromchai. 2007. Degradation of phenanthrene on plant leaves by phyllosphere bacteria. J. Gen. Appl. Microbiol. 53: 265-272   DOI   ScienceOn
45 Wei, Q. F., R. R. Mather, and A. F. Fotheringham. 2005. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 96: 331-334   DOI   ScienceOn
46 Quatrini, P., G. Scaglione, C. De Pasquale, S. Riela, and A. M. Puglia. 2008. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J. Appl. Microbiol. 104: 251-259