• Title/Summary/Keyword: off-axis

Search Result 501, Processing Time 0.023 seconds

Novel computational approaches characterizing knee physiotherapy

  • Kim, Wangdo;Veloso, Antonio P.;Araujo, Duarte;Kohles, Sean S.
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • A knee joint's longevity depends on the proper integration of structural components in an axial alignment. If just one of the components is abnormally off-axis, the biomechanical system fails, resulting in arthritis. The complexity of various failures in the knee joint has led orthopedic surgeons to select total knee replacement as a primary treatment. In many cases, this means sacrificing much of an other-wise normal joint. Here, we review novel computational approaches to describe knee physiotherapy by introducing a new dimension of foot loading to the knee axis alignment producing an improved functional status of the patient. New physiotherapeutic applications are then possible by aligning foot loading with the functional axis of the knee joint during the treatment of patients with osteoarthritis.

Investigation on formation mechanism of ZnO thin films deposited by pulsed laser deposition depending on plume-substrate angles (펄스 레이저 증착법에서 증착 각도 변화에 따른 ZnO 박막 형성 메카니즘)

  • Kim, Jae-Won;Kang, Hong-Seong;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.200-202
    • /
    • 2004
  • ZnO thin films were grown at different plume-substrate angles by pulsed laser deposition(PLD). From the X-ray diffraction(XRD) result, all ZnO thin films were found to be well c-axis oriented and c-axis lattice constant approached the value of bulk ZnO as plume-substrate(P-S) angle decreased. The grain size of ZnO thin films measured by atomic force microscopy increased and the UV intensity of ZnO thin films investigated by photoluminescence increased as P-S angle decreased. It is found that the improvement of structural and optical properties mainly comes from the reduction of the flux of ablated species arriving on a substrate per a laser shot by tilting a substrate parallel to the plume propagation direction.

  • PDF

3-Dimensional Measurement using Digital Holographic Microscope and Phase Unwrapping (디지털 홀로그래피 현미경과 위상 펼침을 이용한 3차원 측정)

  • Cho, Hyung-Jin;Kim, Doo-Chul;Yu, Young-Hun;Jung, Won-Gi;Shin, Sang-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.4
    • /
    • pp.329-334
    • /
    • 2006
  • We have reconstructed 3-dimensional images by using the digital holographic microscope and the Mask-cut phase unwrapping algorithm. Off-axis holograms recorded with a magnified image of the microscopic object lens and reference beam are numerically reconstructed in amplitude and phase image by the Fresnel diffraction approximation. We have simultaneously reconstructed 2-dimensional and 3-dimensional images of the sub-micrometer objects.

On the Beam Focusing Behavior of Time Reversed Ultrasonic Arrays Using a Multi-Gaussian Beam Model

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Jeong, Yon-Ho;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2008
  • One of the fundamental features of time reversal acoustic (TRA) techniques is the ability to focus the propagating ultrasonic beam to a specific point within the test material. Therefore, it is important to understand the focusing properties of a TR device in many applications including nondestructive testing. In this paper, we employ an analytical scheme for the analysis of TR beam focusing in a homogeneous medium. More specifically, a nonparaxial multi-Gaussian beam (NMGB) model is used to simulate the focusing behavior of array transducers composed of multiple rectangular elements. The NMGB model is found to generate accurate beam fields beyond the nonparaxial region. Two different simulation cases are considered here for the focal points specified on and off from the central axis of the array transducer. The simulation results show that the focal spot size increases with increasing focal length and focal angle. Furthermore, the maximum velocity amplitude does not always coincide with the specified focal point. Simulation results for the off-axis focusing cases do demonstrate the accurate steering capability of the TR focusing.

Design of Linear Astigmatism Free Three Mirror System (LAF-TMS) for Sky Monitoring Programs

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Kim, Sanghyuk;Kim, Dae Wook;Lee, Hanshin;Lee, Kwangjo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.88.1-88.1
    • /
    • 2017
  • We report a novel design of the "linear astigmatism-free" three mirror system (LAF-TMS). In general, the linear astigmatism is one of the most dominant aberration degrading image qualities in common off-axis systems. The proposed LAF-TMS is based on a confocal off-axis three mirror system, where higher order aberrations are minimized via our numerical optimization. The system comprises three pieces of aluminum-alloy freeform mirrors that are feasible to be fabricated with current single-point diamond turning (SPDT) machining technology. The surface figures, dimensions, and positions of mirrors are carefully optimized for a LAF performance. For higher precision-positioning mechanism, we also included alignment parts: shims (for tilting) and L-brackets (for decentering). Any possible mechanical deformation due to assembly process as well as 1-G gravity, and its influence on optical performances of the system are investigated via the finite element (FE) analysis. The LAF-TMS has low f-number and a wide field of view, which is promising for sky monitoring programs such as supernova surveys.

  • PDF

A study on the simultaneous measurement of spray-droplet size and velocity by LDV (LDV에 의한 噴霧液適의 크기 및 速度의 同時測定에 관한 硏究)

  • 이흥백;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.566-574
    • /
    • 1988
  • A study is described for obtaining real time in situ size and velocity measurements of the spray-droplet using crossed-beam interferometry. The optical arrangement is similar to dual-beam laser Doppler velocimetry(LDV). Droplets passing trough the probe volume scatter light to the collecting lens placed at 90.deg. off-axis angle. The dual-beam light scatter is analyzed by the geometric optics theory to relate the scattered fringe pattern to droplet diameter. The droplet size measurement is based upon the signal visibility. As the system is based on the Doppler effect, a single component of velocity is velocity is extracted concurrent with the size information. The validity of the method is evaluated by comparing its performance to widely accepted but limited technique, the collection method. By using 90.deg. off-axis scatter detection angle, the measurement of the droplet size and velocity distributions, and the local correlations between droplet sizes and velocities in relatively dense spray environments are made possible.